## APPENDIX D

EDMS FILES (ELECTRONIC COPY)



## OFFICE OF ENVIRONMENTAL COMPLIANCE UNDERGROUND STORAGE TANK AND REMEDIATION DIVISION

Routing/Approval Slip



| Al No.               | 6290                | Facility | 1: EN           | Yergy    | CORP                     | Date Routed:             |
|----------------------|---------------------|----------|-----------------|----------|--------------------------|--------------------------|
| Other ID No.         | •                   | Locatio  | on: Gove        | RNMEN    | CORP 1<br>t Street       | B.R.                     |
| Activity No.         |                     |          | Origin          |          | Todd -                   | Thibodeaux               |
| Section/Group: Rem 1 |                     |          | Attach          | ments:   | Yes                      |                          |
| Description/Type     | of Docun            | nent(s): |                 |          |                          |                          |
| Closure 🗌 Comfort    |                     | Letter 🗌 | Correspon       | dence 🗌  | Corrective Acti          | on 🗌 Conveyance Notice 🗌 |
|                      | N                   |          |                 | Personn  | el 🗌 🔹 🤇                 | Other 🗌                  |
| Technical Rev        | view                | Req'd.   | Initials        | Date     | Return to<br>Originator? | Comments                 |
| Environmental        | Scientist           |          |                 |          |                          |                          |
|                      | Geology             |          |                 |          |                          |                          |
|                      | Legal               |          |                 |          |                          |                          |
| Technical            | Advisor             |          |                 |          |                          |                          |
| Other ()             |                     |          |                 |          | O Y O N                  |                          |
| Additional Co        | Additional Comments |          |                 |          |                          |                          |
| Management Review    |                     | Req'd.   | Initials        | Date     | Return to<br>Originator? | Comments                 |
| Su                   | pervisor            | Ŕ        | 844             | 11/15/13 |                          |                          |
|                      | Manager             | <b>√</b> | Eco for Chaton  |          |                          |                          |
| Admi                 | nistrator           | ۶Į       | Eca for Cliaton | 11/15/13 | O Y D N                  | copy for Vivion          |
| Assistant S          | ecretary            |          |                 | //       |                          |                          |
| Deputy S             | ecretary            |          |                 |          |                          |                          |
| S                    | ecretary            |          |                 |          |                          |                          |
| Other (              |                     |          | 2.              |          |                          |                          |
| Additional Co        | omments             |          |                 | <b></b>  |                          |                          |

TEMPO Data Entry Completed (Date Document Completed): \_\_

RPform\_5225\_r04 01/10/2011

### Office of Environmental Compliance Underground Storage Tank and Remediation Division NFA, COC, or NFI Letters <u>ONLY</u>

(Use this form as an attachment to the OEC Route Slip for NFA, COC, or NFI Letters)

7-7

| Originator: Todd 7                                                                                                             | L A C CILV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | neck One or Both<br>Applicable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NFA Letter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COC Letter or                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| it for the second second                                                                                                       | Requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | red Cost/Fee Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| Final Invoicing Verification Co                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ent Verification Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tact                                                                                                           |
| PRP – Bridget Jones                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solid Wast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | te – Vicki Thibodeau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                              |
| <b>Environmental Conditions Rev</b>                                                                                            | iew – Jennifer Bounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Environme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ental Conditions Rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iew – Jennifer Bounds                                                                                          |
| VRP – Vicki Thibodeaux                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW Fee -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vicki Thibodeaux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |
| Date Fee<br>Paid:                                                                                                              | Fee Type: SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V (\$1320)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ]ECR (\$1500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GW (\$)                                                                                                        |
| Date Final VRP Cust<br>Invoice Paid: Warrev                                                                                    | Invoice<br>Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECR (if costs in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | curred > \$1500 fee)                                                                                           |
|                                                                                                                                | Technical Crite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ria Checklist for M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NFA/COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |
| Document that vertical and la extent required. Check one:                                                                      | teral extent of impact h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | as been defined t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | State of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trial/Commercial<br>ndustrial (residential)                                                                    |
| the limiting RS at this time; O<br>Exceedance is addressed under<br><u>Verified by Team Leader (TL)</u><br>Explain any unusual |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al Action by Use R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | estrictions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J.J.<br>TL initials                                                                                            |
| conditions or allowed exceedance.                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntrols in Place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CHARGE ME CARL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the state of the second second                                                                             |
| Are either LaDEQ-approved C<br>of the remedy? If "YES", atta                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| Engineering Controls                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stitutional Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the second s |
| Access Controls (Fences, et                                                                                                    | and the second division of the second divisio |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Restriction                                                                                                  |
| Cap/Surface Soil Barrier<br>Construction/Maintenar                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Construction Rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | estriction                                                                                                     |
| Impervious Cap                                                                                                                 | City Ordin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge Notice<br>dustrial/Commercial)                                                                              |
| Signage Conveyance Notice (all Industrial/Commercial)                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| Subsurface Containment                                                                                                         | Excavation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Restriction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Servitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | des                                                                                                            |
|                                                                                                                                | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mediation Agreen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Summer of the local division of the local di |                                                                                                                |
| Monitoring wells and/or borin<br>Verified by Team Leader (TL)                                                                  | ngs were properly plugg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed and abandone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>ズ.ス.</u><br>TL initials                                                                                     |
| Waste from investigation and<br>disposal manifests or other do<br><u>Team Leader (TL)</u>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second second with the second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TL initials                                                                                                    |
| Final inspection has been per                                                                                                  | ormed verifying condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ons for NFA/COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES (Attach copy of FI                                                                                         |

BOBBY JINDAL GOVERNOR



PEGGY M. HATCH SECRETARY

### State of Louisiana department of environmental quality office of environmental compliance

NOV 1 5 2013

Mr. Fernando J, Calle, REM 5564 Essen Lane Baton Rouge, Louisiana 70809

RE: No Further Action Notification Entergy Corp Government Street; AI Number (6290) 1509 Government Street Baton Rouge, East Baton Rouge Parish, LA

Dear Mr.Calle:

The Louisiana Department of Environmental Quality – Underground Storage Tank and Remediation Division (LDEQ-USTRD) has completed its review of your Remedial Investigation Report dated May 2012, Results of Supplemental Investigation dated September 16, 2013 and Report of Site Remediation and Sampling Activities dated September 2013 for the above referenced area of investigation located at 1509 Government Street, Baton Rouge in East Baton Rouge Parish. Based on our review of this document and all previously submitted information, we have determined that no further action is necessary at this time. The Basis of Decision for this notification is attached.

If you have any questions or need further information, please call Todd Thibodeaux at (225) 219-3516. Thank you for your cooperation in addressing this area.

Sincerely,

TO FIL

Thomas F. Harris, Administrator Underground Storage Tank and Remediation Division

jtt

Attachment BOD

c: Imaging Operations – Solid Waste Terri Gibson Bridget Jones (for sites with RCAT numbers)

### **BASIS OF DECISION FOR NO FURTHER ACTION**

Entergy Corp. Government Street AI# 6290

The Louisiana Department of Environmental Quality – Underground Storage Tank and Remediation Division (LDEQ-USTRD) has determined that Entergy Corp. Government Street requires No Further Action At This Time.

The property is currently unused. The property had a wholesale hay and feed store developed in the northwest corner of the property in 1908 until 1911. A residence was developed along Government Street in 1911. A lumber yard operated on the western portion of the property from 1911 until the 1940s. Baton Rouge Electric Light Plant operated an electrical generation plant from 1916 until the 1940s. During this time there were also two dwellings on the eastern portion of the property. Gulf States Utilities Co. operated an electrical substation at the property from the 1940s until the 1970s. Gulf States Utilities Co. used the property for storage, day to day operations, and business operations from the 1970s until the 1990s. Entergy used the property for financial, business, and paperwork activities, maintenance and repair operations, and storage from the 1990s until 2011. The property has been vacant and unused since the end of 2011. A complete soil and groundwater investigation report with a date of May 2012, a supplemental soil and groundwater investigation report with a date of May 2012, a supplemental soil and groundwater investigation report with a date of May 2012, a supplemental soil and groundwater investigation report with a date of September 16, 2013 and a site remediation report with a date of September 2013 covered all remedial and investigation activities performed on site.

Remedial standards were developed for this property using LDEQ's RECAP Management Option 1 standards. The standards that were applied to this site are listed in the table that appears at the end of this BOD. The site at present contains 10 buildings, paved areas, storage areas, and a communication tower. The site is considered an industrial use property; however, it is being evaluated under a non-industrial (residential) scenario for unrestricted future use of the property. According to the Louisiana Department of Natural Resources (LDNR) there are 98 registered wells located within a one-mile radius of the site. Of the 98 registered wells, 66 of the wells were registered as plugged and abandoned, abandoned, inactive, or destroyed and 32 are active wells. Of the 32 active wells, 11 are monitor wells, nine are observation wells, five are piezometers, three are heat pumps, two are public supply wells, one is an irrigation well, and one is a cathodic well. Of the registered water wells, one power generation and one public supply well were in close proximity to the subject property. The 1,820-feet bgs power generation well is registered to Gulf States Utilities, and the 2,284-feet bgs public supply well is registered to Baton Rouge WW. Based on depths, the power generation and public supply wells were not hydraulically connected to the upper transmissive zone at the site. Results from a sample analyzed for total dissolved solids (TDS) revealed a TDS concentration of 392 milligrams per liter (mg/l). Slug tests results revealed the well yield in the shallow aquifer is less than one gallon per day (gpd). Based upon a TDS concentration of 392 mg/l and a well yield of <1 gpd, the shallow groundwater at the site is classified as Class 3A. The nearest surface water body is Capitol Lake located approximately 4,000 feet northeast of the site, which is classified as a non-drinking water source. Therefore, the appropriate GW3 designation is Groundwater Classification 3 Non-Drinking Water (GW3NDW).

### BOD Page 2

Remedial actions taken included the removal and disposal of approximately 29,374 gallons of fluid from two concrete USTs, pressure washing of USTs and filling in USTs with 324 cubic yards of concrete grout mixture. Also, three hydraulic lifts were removed and disposed of along with 26.2 tons of contaminated soil. The lifts were transported to Southern Recycling in Port Allen, La. and the contaminated soil was disposed of at Woodside Landfill in Walker, La. Material manifest sent to LDEQ verified that the contaminated material has been disposed of properly. Confirmatory soil samples confirmed that the source has been mitigated. TPH, RECAP metals, VOCs, and SVOCs samples taken in the tank area were below RECAP non-industrial screening standards. TPH fractions and SVOCs samples taken in the lift areas were below RECAP non-industrial screening standards. No Further Action At This Time is granted when contamination is reduced to the extent necessary to achieve the established standards.

There are no institutional controls on this property, because all remaining COC concentrations were below non-industrial standards

An inspection of the site was performed on November 14, 2013 confirming that no investigation derived waste remains on site.

All investigation wells were plugged and abandoned in accordance with applicable sections of *Construction of Geotechnical Boreholes and Groundwater Monitoring Systems Handbook*, prepared by the LDEQ and the LDOTD, dated December 2000.

## The impacted media, constituents of concern, maximum concentration remaining on site and limiting RECAP standards established for this site are listed in the following table:

| Medium | Constituent of Concern  | Maximum Remaining<br>Concentration (mg/kg) | Limiting RECAP Standard (mg/kg) |
|--------|-------------------------|--------------------------------------------|---------------------------------|
| Soil   | 1,2 Dichlorobenzene     | .00046                                     | 310 MO-1 Soilesni               |
|        | 1,1 Dichlorethane       | .0019                                      | 47 MO-1 Soilesni                |
|        | 1,2 Dichloroethene      | .018                                       | 3.4 MO-1Soilesni                |
|        | 1,3 Dichloropropene     | .0063                                      | 3.1 MO-1Soilni                  |
|        | Acetone                 | .34                                        | 130 MO-1 Soilesni               |
|        | Benzene                 | .006                                       | 1 MO-1Soilesni                  |
|        | Carbon Disulfide        | .0088                                      | .31 MO-1 Soilesni               |
|        | Carbon Tetrachloride    | .0068                                      | .26 MO-1 Soilesni               |
|        | Cis-1,2-Dichloroethene  | .018                                       | 1.2 MO-1 Soilesni               |
|        | Cis-1,3-Dichloropropene | .0063                                      | 1.7 MO-1 Soilesni               |
|        | Ethylbenzene            | .0016                                      | 230 MO-1 Soilsat                |
|        | M,p-Xylene              | .0028                                      | 15 MO-1 Soilesni                |
|        | Methyl Ethyl Ketone     | .040                                       | 2000 MO-1 Soilni                |
|        | Methylene Chloride      | .0015                                      | 13 MO-1 Soilesni                |
|        | Toluene                 | .0037                                      | 11 MO-1 Soilesni                |
|        | Benz(a)anthracene       | .051                                       | ,62 MO-1 Soilni                 |
|        | Benzo(a)pyrene          | .281*                                      | .33 MO-1 Soilni                 |
|        | Benzo(b)fluoranthene    | .568*                                      | .62 MO-1 Soilni                 |
|        | Dibenz(a,h)anthracene   | .13                                        | .33 MO-1 Soilni                 |
|        | Indeno(1,2,3-cd)Pyrene  | .45                                        | .62 MO-1 Soilni                 |
| L      | Lead                    | 180                                        | 400 MO-1 Soilni**               |

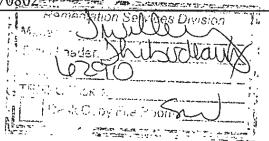
\* Calculated 95% UCL

\*\* SPLP Standard of 0.300 mg/L therefore Limiting Standard in Soilni

BOD Page 3

BOD Page 4

| Medium      | Constituent of Concern | Maximum Remaining | Limiting RECAP Standard |
|-------------|------------------------|-------------------|-------------------------|
|             |                        | Concentration     |                         |
| Groundwater | Arsenic                | .052              | 1000 MO-1 GW3NDW        |
|             | Lead                   | .058              | 8.7 MO-1 GW3NDW         |
|             | Vanadium               | .027              | 779 MO-1 GW3NDW         |


Additional information on the details of the investigation and evaluation of this site may be obtained from LDEQ's Public Records Center located in the Galvez Building, Room 127, 602 N. Fifth Street, Baton Rouge, LA 70802. Additional information regarding the Public Records may be obtained by calling (225) 219-3168 or by emailing publicrecords@la.gov

### LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY FIELD INTERVIEW FORM

| AGENCY INTEREST#: 6 2 90                                           |                                                                           |                              |                                       |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------|---------------------------------------|
| ALTERNATE ID#:<br>(ID Type/Number)                                 |                                                                           | -13 TIME OF DEPARTU          | IRE: 24 00 PM                         |
| FACILITY NAME:                                                     | Entergy Corp                                                              | PH #:                        |                                       |
| LOCATION: \$ 1509 (                                                | GoveRNMENT Street                                                         |                              |                                       |
| Baton                                                              |                                                                           | PARISH NAME: E               | Baton Rouge                           |
| RECEIVING STREAM (BASIN/SUE                                        | SEGMENT):                                                                 |                              |                                       |
| MAILING ADDRESS:                                                   |                                                                           | 1014.3                       |                                       |
| FACILITY REPRESENTATIVE:                                           | DNE NUMBER:                                                               | (City) (Stat                 | e) (ZIP)                              |
| NAME, TITLE, ADDRESS and TEL                                       | EPHONE of RESPONSIBLE OFFICIAL                                            | . (if different from above): |                                       |
|                                                                    |                                                                           |                              |                                       |
| INSPECTION TYPE: Rem                                               | PROGRAM INVOLVED: AIR                                                     | WASTE WATER                  | OTHER ZAS                             |
| INSPECTOR'S OBSERVATIONS: (                                        | (e.g. AREAS AND EQUIPMENT INSPECTED, PR<br>COMMITMENTS FROM FACILITY REPI |                              | MARKS, VERBAL                         |
| I applied onsite an                                                | id met with Fernando                                                      | Calle (Entergy               | Jand Jim                              |
| fort Voitier (CA                                                   | WI). We inspected                                                         | the liftaRea                 | . All liftareas                       |
| were backfilled.                                                   | All temporary wel                                                         | Is have been                 | PT PYAZ                               |
| The concrete U                                                     | STS were filled in                                                        | with CONKCR                  | ete, The                              |
| site is leady fo                                                   | NEA status                                                                |                              | 72                                    |
|                                                                    |                                                                           |                              | · · · · · · · · · · · · · · · · · · · |
|                                                                    |                                                                           |                              |                                       |
|                                                                    |                                                                           |                              |                                       |
| · · · · · · · · · · · · · · · · · · ·                              |                                                                           |                              |                                       |
| AREAS OF CONCERN:                                                  |                                                                           |                              |                                       |
| REGULATION                                                         | EXPLANA                                                                   | TION                         | CORRECTED?                            |
| REODERINON                                                         |                                                                           | non                          |                                       |
|                                                                    |                                                                           |                              | _ YES NO                              |
|                                                                    |                                                                           |                              | -                                     |
|                                                                    |                                                                           |                              |                                       |
|                                                                    |                                                                           |                              | YES NO                                |
|                                                                    |                                                                           |                              | YES NO                                |
|                                                                    |                                                                           |                              |                                       |
| PHOTOS TAKEN: D                                                    | SAMPLES TAKEN: D                                                          | ↓ (Attach Chain-of-cus)      |                                       |
| YES NO                                                             | SAMPLES TAKEN: D DA<br>VES N                                              | (Attach Chain-of-cus         |                                       |
| PHOTOS TAKEN: D bá<br>YES NÓ<br>RECEIVED BY: SIGNATURE:            |                                                                           | (Attach Chain-of-cus         |                                       |
|                                                                    | FERNANDOJ. CALLE                                                          |                              |                                       |
| RECEIVED BY: SIGNATURE:<br>PRINT NAME:<br>(NOTE: SIGNATURE DOES NO | FERNANDOJ. CALLE<br>DT NECESSARILY INDICATE AGREEMENT                     | WITH INSPECTOR'S STA         |                                       |
| RECEIVED BY: SIGNATURE:<br>PRINT NAME:                             | FERNANDOJ. CALLE<br>DT NECESSARILY INDICATE AGREEMENT                     |                              |                                       |
| RECEIVED BY: SIGNATURE:<br>PRINT NAME:<br>(NOTE: SIGNATURE DOES NO | FERNANDOJ. CALLE<br>DT NECESSARILY INDICATE AGREEMENT                     | WITH INSPECTOR'S STA         | itody)                                |
| RECEIVED BY: SIGNATURE:<br>PRINT NAME:<br>(NOTE: SIGNATURE DOES NO | FERNANDOJ. CALLE<br>DT NECESSARILY INDICATE AGREEMENT                     | WITH INSPECTOR'S STA         | itody)                                |

NOTE: The Information contained on this form reflects only the preliminary observations of the inspector(s). It should not be interpreted as a final determination by the Department of Environmental Quality or any of its officers or personnel as to any matter, including, but not limited to, a determination of compliance or lack thereof by the facility operator with any requirements of statutes regulations or permits. Each day of non-compliance constitutes a separate violation of the regulations and/or the Louisiana Environmental Quality Act.

East Baton Rouge Redevelopment Authority 801 North Boulevard, Suite 200 Baton Rouge, Louisiana 70802



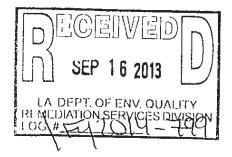


September 12, 2013

Mr. Duane Wilson Louisiana Department of Environmental Quality Environmental Technology P.O. Box 4314

### RE: 1509 Government Street (A.I. 6290)

Dear Mr. Wilson:


As discussed in our August 22, 2013 meeting, the East Baton Rouge Redevelopment Authority ("Authority") respectfully withdraws from the Voluntary Remediation Program, an application for which we submitted to Mr. Thomas F. Harris on September 4, 2012.

Due to a positive modification by the current owner of the subject property, it's in the best interest of the Authority to withdraw from the VRP program.

Should you have any questions, please call.

Sincerely, ims

James Andermann East Baton Rouge Redevelopment Authority Director of Real Estate



## PYBURN & ODOM MCA-

Engineering & Related Services Since 1948

SPLP

May 16, 2006

Keith L. Casanova, Administrator Remediation Services Post Office Box 4314 Baton Rouge, Louisiana 70821-4314

Attention: Keith Casanova

Submittal for Review of the Phase II Environmental Site Assessment for the O'Brien House Site located at the corner of Laurel and N. 12<sup>th</sup> Street in Baton Rouge, Louisiana P&O Project No. 14-754

Dear Mr. Casanova:

RE:

On behalf of Domain-Design, Pyburn & Odom, MCA is please to submit this Phase II Environmental Site Assessment for the above referenced Site for your review and feed back.

Please do not hesitate to call with any additional questions or comments you may have.

Sincerely,

PYBURN & ODOM, MCA Justin Voss

Jonathan Vavasseur Project Environmental Specialist

MAY 2 2 2006

Remediation Services Division

PO Task # 2034

Мападек

Team Leader:

Enclosures: H

Phase II ESA Report

## Pyburn & Odom MCA



Engineering & Related Services Since 1948

SPLP

May 16, 2006

Keith L. Casanova, Administrator Remediation Services Post Office Box 4314 Baton Rouge, Louisiana 70821-4314

Attention:

RE:

Keith Casanova

Submittal for Review of the Phase II Environmental Site Assessment for the O'Brien House Site located at the corner of Laurel and N. 12<sup>th</sup> Street in Baton Rouge, Louisiana P&O Project No. 14-754

Dear Mr. Casanova:

On behalf of Domain-Design, Pyburn & Odom, MCA is please to submit this Phase II Environmental Site Assessment for the above referenced Site for your review and feed back.

Please do not hesitate to call with any additional questions or comments you may have.

Sincerely,

PYBURN & ODOM, MCA

Remediation

Manager

NOL

Taskまる

Team Leader: Louie

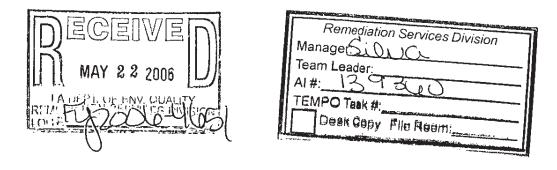
Juster Vass

Jonathan Vavasseur Project Environmental Specialist

MAY 2 2 2006

 $\mathcal{A}$ 

030


Pila Room

ervices Division

Enclosures:

Phase II ESA Report

8178 G.S.R.I. Avenue • Baton Rouge, Louisiana 70820 • Telephone (225) 766-6330 • Fax (225) 769-7680 www.pyodom.com • e-mail: staff@pyodom.com



### PHASE II ENVIRONMENTAL SITE ASSESSMENT FOR A PROPERTY LOCATED AT THE CORNER OF LAUREL AND NORTH 12<sup>TH</sup> STREET EAST BATON ROUGE PARISH, LOUISIANA

### **PREPARED FOR:**

DOMAIN – DESIGN 9131 INTERLINE AVENUE SUITE 4B BATON ROUGE, LOUISIANA 70809

### **PREPARED BY:**

PYBURN & ODOM MCA 8178 G.S.R.I. AVENUE BATON ROUGE, LA 70820

**P&O PROJECT NO. 14-754** 

MAY 15, 2006

### Table of Contents

| 1.0 | Introduction                  | 1  |
|-----|-------------------------------|----|
| 2.0 | Background Information        | 1  |
| 2.1 | Site Location and Description | 1  |
| 3.0 | Soil Sampling                 | 2  |
| 4.0 | Laboratory Analytical Results | 3. |
| 4.1 | Soils Analysis                | 3  |
| 5.0 | Summary and Conclusions       | 6  |
| 6.0 | Recommendations               | 7  |

### <u>Appendices</u>

| P&O Project Team                                   | Appendix A |
|----------------------------------------------------|------------|
| Vicinity Map                                       | Appendix B |
| Site Map                                           | Appendix C |
| Site Photographs                                   | Appendix D |
| Field Boring Logs                                  | Appendix E |
| Laboratory Analytical Results and Chain of Custody | Appendix F |
| Department of Recreation and Tourism Letter        | Appendix G |
| Limitations                                        | Appendix H |

### 1.0 INTRODUCTION

This report summarizes the results of the Phase II Environmental Site Assessment Services performed by Pyburn & Odom MCA, LLC at the location of the circular concrete slab on the O'Brien House Site determined to be the foundation for a gas storage tank for the former Baton Rouge Electric Company Gas Plant. The Site is located at the corner of Laurel and N 12<sup>th</sup> Street in Baton Rouge, Louisiana. The assessment was performed for Domain-Design Inc. of Baton Rouge, Louisiana.

The recommendation for a Phase II Site Assessment to determine if there is any contamination on the Site, was based on the condition that the circular concrete slab was used as a foundation for a gas storage tank for the former Baton Rouge Electric Company Gas Plant that occupied the Site in the early to mid 1900's. This tank was used for balancing purposes rather than storage of gas. This facility used the coal gassification process to convert coal partially or completely to combustible gases.

The Scope of Work for this project was as follows:

- Visually inspect the Site for any visible evidence of contamination.
- Obtain soil samples at 1-2 foot intervals at a maximum depth of four feet.
- Place soil samples in resealable bags for on-site analysis of the sample headspace with a Photo Ionization Detector (PID).
- Submit the soil samples to a laboratory for analysis of Toxicity Characteristic Leaching Procedure (TCLP) and Semi Volatile Organic Compounds (SVOC's)

Field work for this investigation was completed on April 20, 2006. This report summarizes the results of the sampling and analysis completed during this project. Background information on the property is also included.

### 2.0 BACKGROUND INFORMATION

### 2.1 SITE LOCATION AND DECRIPTION

The Site is located at the corner of Laurel and N 12<sup>th</sup> Street in Baton Rouge, Louisiana. The circular concrete slab is located in the cleared southern portion of the Site and was used in the past by the former Baton Rouge Electric Company Gas Plant as the foundation of a gas storage tank (See Attached Vicinity Map in Appendix A for the Site Location).

The study area is bordered to the north by the Department of Health and Hospitals building, to the east by the O'Brien House, to the west by N. 12<sup>th</sup> St. and to the south by Laurel St. The study area was part of the Baton Rouge Electric Company Gas Works in the late 19<sup>th</sup> century and in the early decades of the 20<sup>th</sup> century. It most recently served as a residential/commercial property and contained a residential building that has recently been demolished and removed. The circular concrete slab was discovered after the Site was cleared.

A letter received from the Department of Culture Recreation and Tourism dated March 17, 2006 stated that the circular concrete slab served as a foundation for a gas storage tank (geometer) associated with the former Baton Rouge Electric Company Gas Plant.

The geometer was used for balancing purposes to insure that the pipes operated within a safe range of pressure. This letter also contained a sanborn map dated 1923 that shows the facility and gasometer located on the Site at the corner of Laurel and N 12<sup>th</sup> Street (See Department of Culture Recreation and Tourism letter in Appendix G).

### 3.0 SOIL SAMPLING

Sub-surface sampling activities at this Site were conducted on April 20, 2006. The soil boring activities were conducted utilizing a manual hand auger. This type of field sampling equipment utilizes a five foot steel auger that is manually twisted into the ground to obtain a soil core sample. At the desired sampling depth, a portion of the core sample is extracted to obtain an undisturbed sample for analysis.

Soil boring locations close to and surrounding the circular concrete slab were originally planned such that, they would most likely indicate the presence of contamination from the coal gasification process should it exist. A total of six soil borings were taken, four around the periphery of the concrete slab, one sample to the east against the O'Brien House building, and one sample for quality assurance (See Site Map in Appendix B for Sample locations).

The Scope of Work for these soil borings called for the six borings to be advanced to a maximum depth of four feet. Shallow ground water was encountered in three of the six soil borings. The soil boring depths are as follows: Boring No. 1 to 3.5 ft., Boring No. 2 to 3.0ft., Boring No.3 to 2.5ft., Boring No.4 to 2.5 ft., Boring No. 5 to 3.5 ft., and Boring No. 6 to 2.5 feet.

Soil samples were retrieved at varying depths from each boring and were field-analyzed for physical characteristics including: texture, grain size, color, moisture content, possible staining, and any unusual odors. The shallow soils underlying the study area were found to consist primarily of deposited fill material to depths ranging from 0-2 ft. Boring No. 1 encountered a black fibrous fowl smelling layer at 2.0 ft. that persisted to 3.0 ft. Geological and field observations are included on field boring logs in Appendix E.

In addition each retrieved soil sample was field-screened for the presence of Volatile Organic Compounds (VOC's) using a photo ionization detector (PID). The soil samples were placed in resealable containers as they were collected and allowed to reach ambient temperature. The headspace of each container was then probed with a PID to provide an approximate measure of the concentration of VOC's present in the soil. PID readings were recorded on the boring logs. These PID values ranged from 0.0 parts per million (PPM) in samples taken at variable depths in boring 2-5. The highest PID reading was 38.5 ppm at boring No. 1. The soil samples from each boring were then placed in the provided clean glass sample jar with a resealable screw-on lid, labeled, stored in a cooler and sent to the laboratory.

A bulk sample of a light gray siding material was collected. This material was found on the site in small pieces and is suspect-asbestos-containing material. The material was placed into a labeled bag and was submitted to CA Laboratory under a Chain of Custody for analysis via polarized light microscopy.

All sampling equipment was decontaminated prior to and between each sampling interval to prevent cross-contamination of soil samples. Decontamination was accomplished by thoroughly washing all equipment with tap water and non-phosphate detergent, then rinsing clean with distilled water. After the samples were taken, the holes were back filled to grade with the remainder of soil excavated from the boring.

### 4.0 LABORATORY ANALYTICAL RESULTS

### 4.1 SOILS ANALYSIS

Soil samples from each of the five borings were submitted to a laboratory for analysis of Toxicity Characteristic Leaching Procedure (TCLP) and Semi Volatile Organic Compounds (SVOC's). All TCLP concentrations from SP1-1, SP1-3, SP2-1, SP2-2, SP3-1, SP3-2, SP4-1, and SP5-1 ranged from <0.0020 to <1.0 mg/l. All soil sample TCLP metals results were below the regulatory level set forth by the Environmental Protection Agency (EPA). All soil analysis was by USEPA method 6010B and was performed by EMSL Analytical, of Westmont, NJ. (See Laboratory Results in Appendix F).

Soil sample SP1-2, SP1-4, SP2-2, SP2-2, SP3-1, SP4-2, SP5-2, and SP6-1 were tested for concentrations of Semi Volatile Organic Compounds. All soils analysis were by USEPA method 8270 ABN and were performed by EMSL Analytical, of Westmont, NJ (See Laboratory Results in Appendix F).

The results of the laboratory concentrations were then compared to the Industrial Soils Concentration Limits found in the Louisiana Department of Environmental Quality (LADEQ) RECAP Table Screening Standards for Soil and Ground water. Our comparison showed that soil samples SP1-2, SP1-4, SP2-2, SP3-1, SP4-2, SP2-2, SP3-1, SP4-2, and SP5-2 had concentrations of certain compound above the accepted limits set forth by the LDEQ RECAP Screening Standards (Tables 1-6 show the elevated concentrations of each compound for that particular sample).

The results of the analysis of the light gray material revealed 25% Chrysotile Asbestos. The sample analysis was performed by CA Labs, LLC. of Baton Rouge, Louisiana via polarized light microscopy. CA Labs is a successful participant in the National Institute of Standards and Technology (NIST), National Voluntary Laboratory Accreditation Program (NVLAP) and LEFEQ, LELAP certified.

### TABLE 1

### Elevated Semi Volatile Organic Compound Concentrations (SVOC's) in Soils for SP-1-2

| Case #   | Compound                   | Lab Concentration<br>Mg/kg | RECAP (Soil I)<br>Table Concentration<br>Mg/kg |
|----------|----------------------------|----------------------------|------------------------------------------------|
| 91-20-3  | Naphthalene                | 290                        | 43                                             |
| 206-44-0 | fluoran thene              | 670                        | 220                                            |
| 56-55-3  | Benzo (a) anthracene       | 260                        | 2.9                                            |
| 205-99-2 | Benzo (b) fluoran<br>thene | 220                        | 2.9                                            |
| 207-08-9 | Benzo (k)<br>fluoranthene  | 93                         | 29                                             |
| 50-32-8  | , Benzo (a) pyrene         | 180                        | 0.33                                           |
| 193-39-5 | idena (1,2,3-cd)<br>pyrene | 130                        | 2.9                                            |
| 53-70-3  | Dibenz (a,h)<br>anthracene | 37                         | 0.33                                           |

### TABLE 2

# Elevated Semi Volatile Organic Compound (SVOC's) Concentrations in Soils for SP1-2

### O'Brien House Site, Baton Rouge, Louisiana

| Case #   | Compound                  | Lab Concentration<br>Mg/kg | RECAP (Soil I)<br>Table Concentration<br>Mg/kg |
|----------|---------------------------|----------------------------|------------------------------------------------|
| 91-20-3  | Naphthalene               | 290                        | 43                                             |
| 56-55-3  | Benzo (a) anthracene      | 260                        | 2.9                                            |
| 218-01-4 | Chrysene                  | 530                        | 290                                            |
| 205-99-2 | Benzo (b)<br>fluoranthene | 500                        | 2.9                                            |
| 207-08-9 | Benzo (k)<br>fluoranthene | 180                        | 29                                             |
| 50-32-8  | Benzo (a) pyrene          | 410                        | 0.33                                           |

| 193-39-5 | idena (1,2,3-cd) | 310    | 2.9 |
|----------|------------------|--------|-----|
|          | pyrene           |        |     |
|          |                  | TABLEA |     |

TABLE 3

Elevated Semi Volatile Organic Compound (SVOC's) Concentrations in Soils for SP2-2

### O'Brien House Site, Baton Rouge, Louisiana

| Case #  | Compound         | Lab Concentration<br>Mg/kg | RECAP (Soil I)<br>Table Concentration<br>Mg/kg |
|---------|------------------|----------------------------|------------------------------------------------|
| 50-32-8 | Benzo (a) pyrene | 410                        | 0.33                                           |

### TABLE 4

### Elevated Semi Volatile Organic Compound (SVOC's) Concentrations in Soils for SP3-1

### O'Brien House Site, Baton Rouge, Louisiana

| Case #   | Compound                   | Lab Concentration<br>Mg/kg | RECAP (Soil I)<br>Table Concentration<br>Mg/kg |
|----------|----------------------------|----------------------------|------------------------------------------------|
| 205-99-2 | Benzo (b)<br>fluoranthene  | 92                         | 2.9                                            |
| 207-08-9 | Benzo (il)<br>fluoranthene | 32                         | 29                                             |
| 50-32-8  | Benzo (a) pyrene           | 84                         | 0.33                                           |
| 193-39-5 | idena (1,2,3-cd)<br>pyrene | 81                         | 2.9                                            |
| 53-70-3  | Dibenz (a,h)<br>anthracene | 9                          | 0.33                                           |

### TABLE 5

### Elevated Semi Volatile Organic Compound (SVOC's) Concentrations in Soils for SP4-2

### O'Brien House Site, Baton Rouge, Louisiana

| Case #  | Compound         | Lab Concentration<br>Mg/kg | RECAP (Soil I)<br>Table Concentration<br>Mg/kg |
|---------|------------------|----------------------------|------------------------------------------------|
| 50-32-8 | Benzo (a) pyrene | 0.47                       | 0.33                                           |

### TABLE 6

### Elevated Semi Volatile Organic Compound (SVOC's) Concentrations in Soils for SP5-2

### O'Brien House Site, Baton Rouge, Louisiana

| Case #   | Compound                   | Lab Concentration<br>Mg/kg | RECAP (Soil I)<br>Table Concentration<br>Mg/kg |
|----------|----------------------------|----------------------------|------------------------------------------------|
| 205-99-2 | Benzo (b)<br>fluoranthene  | 82                         | 2.9                                            |
| 207-08-9 | Benzo (k) fluoran<br>thene | 30                         | 29                                             |
| 50-32-8  | Benzo (a) pyrene           | 76                         | 0.33                                           |
| 193-39-5 | idena (1,2,3-cd)<br>pyrene | 76                         | 2.9                                            |
| 53-70-3  | Dibenz (a,h)<br>anthracene | 22                         | 0.33                                           |

### 5.0 SUMMARY AND CONCLUSIONS

A Phase II Environmental Site Assessment was performed by Pyburn & Odom in the southern portion of the O'Brien House Site located at the corner of Laurel and N 12<sup>th</sup> Street in Baton Rouge, Louisiana. The recommendation for a Phase II Environmental Assessment was based on the condition that the Site was formerly occupied by the Baton Rouge Electric Company Gas Plant and the large concrete slab discovered was used as the foundation for a gas storage tank in the coal gasification process for converting coal partially or completely to gas.

Subsurface soil sampling was conducted to determine if any contamination may be present at the subject property. Four soil boring were drilled around the periphery of the circular concrete slab, one boring was done to the east of the slab against the O'Brien House building, and another boring was done off site for quality assurance.

Soil samples were retrieved at varying depths ranging from 1-4 feet and the headspace of each sample was field screened for VOC's utilizing a PID. PID field screening values ranged from 0.0 ppm in the soils retrieved from borings 2-5 to 38.5 ppm in soil boring 1.

Shallow soils at the boring locations chosen for this study up to 2.5 feet consisted of fill material and below consisted of olive gray silty clay. Ground water was observed in soil borings 1,2 and 3 at a depth of 1.5 feet.

Laboratory Analytical results indicate that the concentrations of TCLP metals in the soil samples taken were below the regulatory level set forth by the USEPA.

Laboratory Analysis also indicate that soil samples SP1-2, SP1-4, SP2-2, SP3-1, SP4-2 and SP5-2 contain concentrations of SVOC's above the acceptable limits defined in the LDEQ Screening standards for soil and ground water.

The source of contamination at this Site has not been confirmed. The past use of this Site as the former Baton Rouge Electric Company Gas Plant and the coal gasification process may have caused the SVOC contamination detected in the laboratory analysis.

The results of the analysis of the light gray siding material revealed 25% Chrysotile Asbestos. The material is found on the site mixed with the loose surface soil and stockpiled materials.

### 6.0 **RECOMMENDATIONS**

Pyburn & Odom recommends the following action be taken at this Site:

1). Notify the State of Louisiana Department of Environmental Quality (LDEQ) that soil contamination has been detected at the subject site.

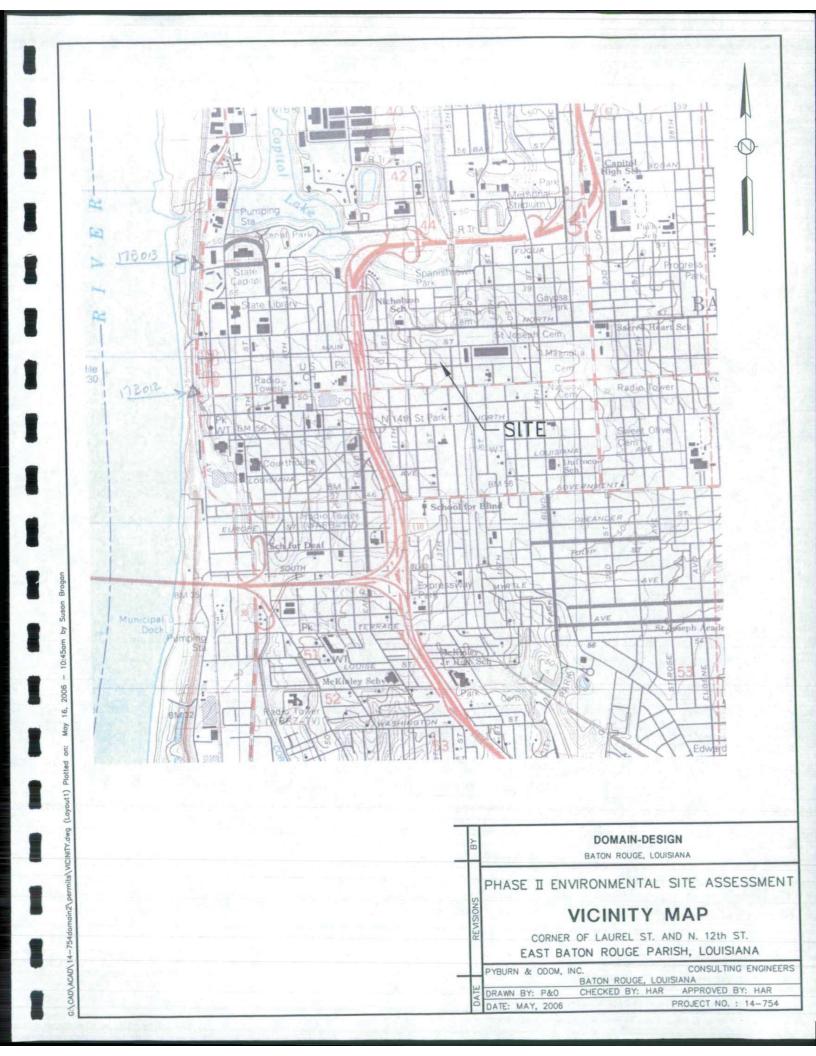
2). Following the investigation to define the extent of contamination, evaluate whether corrective action will be required by LDEQ. If LDEQ requires more definition of the contamination we propose to conduct a Phase III Investigation. If so, prepare a corrective action plan to address the contamination problem at the Site.

### APPENDIX A P&O PROJECT TEAM

I

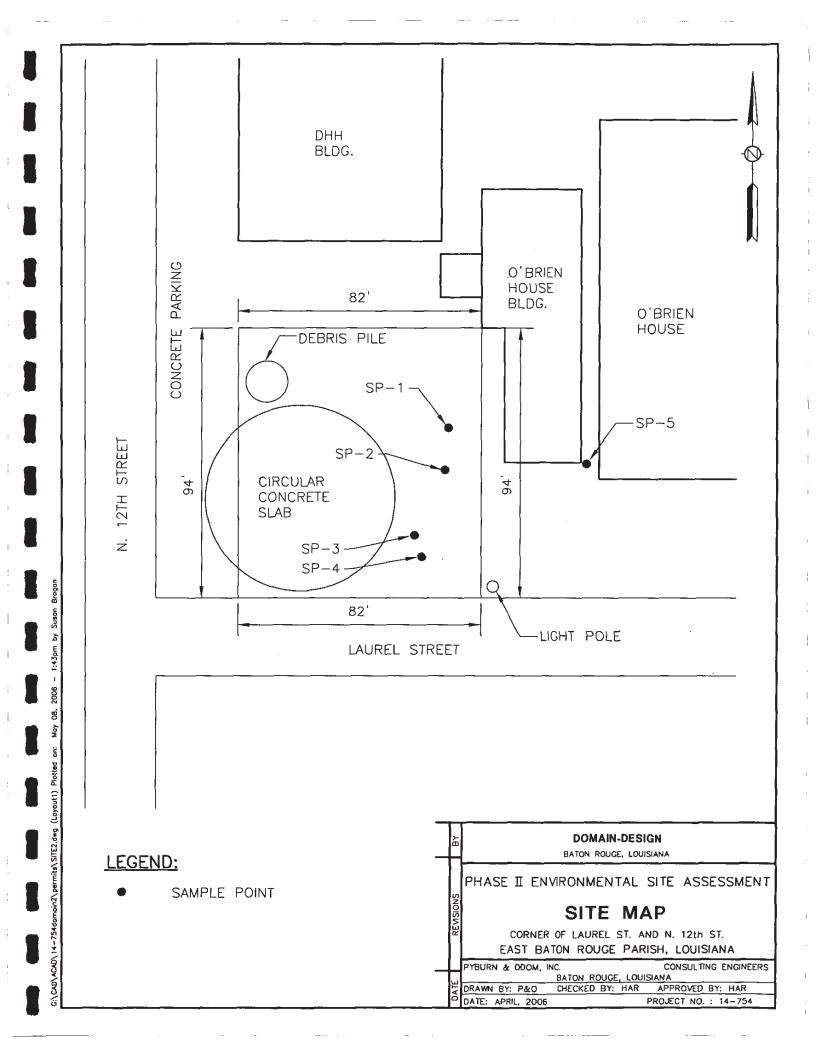
### PYBURN & ODOM, INC. PHASE I – ENVIRONMENTAL SITE ASSESSMENTS PROJECT TEAM

Charles A. Steele, P.E. Harry A. Rayner Brian Miller Jonathan Vacasseur Senior Environmental Engineer Environmental Specialist Biologist Biologist


**Mr. Charles A. Steele.** Mr. Steele received his degree in Chemical Engineering from the University of Tennessee. Mr. Steele has over 25 years of experience in environmental assessments and corrective action plans. His early employment with the Tennessee Department of Health and Environment as an Environmental Engineer has provided him with the skills and experience necessary to solve environmental problems of all types, including environmental investigations and site remediation. Mr. Steele is a Registered Professional Engineer in the State of Louisiana.

**Mr. Harry A. Rayner.** Mr. Rayner received his degree in Construction Technology from Louisiana State University. Over the past twenty-five years, Mr. Rayner has served as Project Manager for hundreds of environmental assessments and remediation projects. He has developed and administered projects for industrial and commercial facilities, and for schools and hospitals. Mr. Rayner has directed and conducted hundreds of environmental site assessments including Phase I's, II's and III's. He is a Registered Environmental Assessor in the State of California, and an AHERA Accredited Asbestos Designer, Inspector, Management Planner and Contractor Supervisor, and has performed environmental site inspections throughout the West Coast, Canada and the State of Louisiana. Mr. Rayner is a LADEQ Accredited Asbestos Designer and Inspector.

<u>Mr. Brian K. Miller.</u> Mr. Miller has his B.S. degree in Wildlife and Fisheries Science and his M.S. in Wildlife Ecology and has successfully completed the Wetlands Identification Course. Mr. Miller has conducted numerous Phase I Environmental Site Assessments and Wetland Delineations.


**Mr. Jonathan Vavasseur.** Mr. Vavasseur has his B.S. degree in Wildlife and Fisheries Science. Mr. Vacasseur has conducted numerous Phase I Environmental Site Assessments and Wetland Delineations.

### APPENDIX B VICINITY MAP



### APPENDIX C SITE MAP

1



### APPENDIX D SITE PHOTOGRAPHS

i

1

I



LOOKING NORTH AT THE CLEARED SOUTHEAST PORTION OF THE SITE.



LOOKING WEST AT THE CIRCULAR CONCRETE SLAB IN THE SOUTHERN PORTION OF THE SITE.



LOOKING EAST AT SP-1.



LOOKING EAST AT SP-2.



LOOKING SOUTHEAST AT SP-3.



LOOKING SOUTH AT SP-4.



LOOKING EAST AT SP-5 AGAINST THE OBRIEN HOUSE BUILDING.



PHOTO NO. 8

LOOKING NORTH AT SP-1 - SP-4 AROUND THE PERIPHERY OF THE CIRCULAR CONCRETE SLAB.

### APPENDIX E FIELD BORING LOGS

.

BORING LOG NO. PROJECT NO. \_\_14-754 LOCATION: SP-1 DATE: 4/24./0.6 Tarvane or Penetrometer Readings (TSF) Fest Assignment: Leve SURFACE ELEVATION: APUNS Soit Samples Depth (Feel) PHOTO IONIZATION DETECTOR (PPM) DRY AUGER: Samples Groundwater TIME BEGINNING WET ROTARY: \_ TIME ENDING: 11155 COMPLETION DEPTH: 3 SFT No. Type GENERAL MATERIAL DESCRIPTION AND STRATIGRAPHY BROWN FILL MATERIAL 1-1 TCLP Oppn GRAB 54 2 -BLACK ODOROUS FIBROUS CLAY MATERIAL Oppm WET TCLP 1-3 GRAB 58.ppn 1-4-SV. 3 OLIVE GEAY SILTY CLAY BOTTOM OF BORING 4 REMARKS KEY SAMPLE 2'-3'- STRONG DRGANIC CREDSOTE SMELL E THIN-WALLED TUBE HAND AUGER Μ SPLIT-BARREL SAMPLER GROUNDWATER FIRST ENCOUNTERED Y WATER ENLOUNTERED AT GROUNDWATER LEVEL (After 30 This) 242 FERT  $\nabla$ 

PYBURN & ODOM MCA

|                          |        |                |                    |               |         |                                          |                                                   | RING LOG NC<br>лест no. <u>14 - 75</u>                                                            |              |                                                                                    |  |
|--------------------------|--------|----------------|--------------------|---------------|---------|------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------|--|
| Test Assignments         | Soil S | amples<br>Type | Groundwater Levels | Depth (F cel) | Samples | PHOTO<br>IONIZATION<br>DETECTOR<br>(PPM) | Torvane '<br>or<br>Penetrometer<br>Readings (TSF) | LOCATION: <u>SP</u> -<br>DATE: <u>4/20/C</u><br>TIME BEGINNING: <u>1</u><br>TIME ENDING: <u>1</u> | 0:24         | SURFACE ELEVATION: () ()<br>DRY AUGER:<br>WET ROTARY:/A<br>COMPLETION DEPTH: _Z.O' |  |
| TCLP<br>SV<br>TCLP<br>SV | 9-1    | GRAB<br>GRAB   |                    | - I -<br>     |         | Oppm                                     |                                                   |                                                                                                   | Fill Materia |                                                                                    |  |
|                          |        |                |                    | 3             |         | $\bigotimes$                             |                                                   | Olive Grey Bo<br>Bo                                                                               | Silty Clay   | Bocina                                                                             |  |
|                          |        |                |                    |               |         |                                          |                                                   |                                                                                                   |              |                                                                                    |  |
|                          |        | THIN-W         |                    |               |         | -                                        | H.                                                | AND AUGER                                                                                         |              | REMARKS                                                                            |  |
|                          | ⊻<br>∑ |                |                    |               |         | ST ENCO                                  |                                                   |                                                                                                   |              |                                                                                    |  |

Ţ

PYBURN & ODOM MCA

|                  |               |                |                    |         |                                          |                                                   | RING LOG NC<br>ject no. <u>14-75</u> 4                                                                     |            |                                                                                                                    |  |
|------------------|---------------|----------------|--------------------|---------|------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------|--|
| Test Assignments | Soil S<br>No. | amples<br>Type | Groundwater Levels | Samples | PHOTO<br>IONIZATION<br>DETECTOR<br>(PPM) | Torvane '<br>or<br>Penetrometer<br>Reedings (TSF) | LOCATION: <u>SP-2</u><br>DATE: <u>1120100</u><br>TIME BEGINNING: <u>1</u><br>TIME ENDING: <u>1</u><br>GENI | 0:37       | SURFACE ELEVATION: (01000)<br>DRY AUGER:<br>WET ROTARY: 0)/A<br>COMPLETION DEPTH: 2.5<br>CRIPTION AND STRATIGRAPHY |  |
|                  | 3-1           | 6.946          |                    |         | Opem                                     |                                                   |                                                                                                            | on Fill Ma |                                                                                                                    |  |
| TCLP             |               | GRAB           | ┟─┼                | a-      | D PPm                                    |                                                   | Olive Grey                                                                                                 | Silty May  |                                                                                                                    |  |
|                  |               |                |                    |         |                                          |                                                   |                                                                                                            | Bottom of  | Boring                                                                                                             |  |
|                  |               | THIN-W         | ALLEI              |         | KEY                                      | н.                                                | AND AUGER                                                                                                  |            | REMARKS                                                                                                            |  |
|                  | Ø             | SPLIT-         | BARR               | EL S    |                                          |                                                   |                                                                                                            |            |                                                                                                                    |  |
|                  | ¥<br>∑_       |                |                    |         | IRST ENCO                                |                                                   |                                                                                                            |            |                                                                                                                    |  |

PYBURN & ODOM MCA

BORING LOG NO. 4 PROJECT NO. 14-754 Samples FHOTO IONIZATION DETECTOR (PPM) Torvane Penetrometer Readings (TSF) LOCATION: <u>50-4</u> SURFACE ELEVATION: Onund Test Assignments Leve Depth (Feet) Soil Samples DATE: 4120100 DRY AUGER: Groundwater WET ROTARY: NIA TIME BEGINNING: 10:37 TIME ENDING: 10:48 COMPLETION DEPTH: 2.5 Type No. GENERAL MATERIAL DESCRIPTION AND STRATIGRAPHY Brown Fill Material 0.5 1 -Oppm TUP Olive Grey Silty Clay 4-1 GRAB 5V 1.5 Oppm 2. TCLP GRAB 4-2 5V 2.5 Bottom of Boring KEY REMARKS 21 THIN-WALLED TUBE HAND AUGER М SPLIT-BARREL SAMPLER GROUNDWATER FIRST ENCOUNTERED T GROUNDWATER LEVEL (After \_\_\_\_\_ Hours)  $\nabla$ 

PYBURN & ODOM MCA

BORING LOG NO. 5PROJECT NO. 14-754 LOCATION: <u>SP-5</u> SURFACE ELEVATION: (Surgery) Torvane or Penetrometer Readings (TSF) Test Assignments Groundwater Level Depth (Feel) Soil Samples 4120106 DATE: DRY AUGER: \_ PHOTO IONIZATION DETECTOR (PPM) Samples TIME BEGINNING: 10:48 NIA WET ROTARY: \_ TIME ENDING: 10:55 COMPLETION DEPTH: 3.5' GENERAL MATERIAL DESCRIPTION AND STRATIGRAPHY Туре No. Brown Fill material 1 Oppm Light Grey Silty Clay 2 RLP 5-1 GRAB pbbu 51 3 -TELP 5-2 GRAB 5√ 3.5 Bottom of Boring 4 REMARKS KEY THIN-WALLED TUBE HAND AUGER SPLIT-BARREL SAMPLER Ø GROUNDWATER FIRST ENCOUNTERED T GROUNDWATER LEVEL (After \_\_\_\_\_ Hours)  $\nabla$ • . ••

PYBURN & ODOM MCA

| Soil Sameter     S |                  |        |                                               |                                          |                                                   | RING LOG NO. <u>6</u><br>hect no. <u>14-754</u>            | <br>       |            |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|-----------------------------------------------|------------------------------------------|---------------------------------------------------|------------------------------------------------------------|------------|------------|------|
| Image: Second all all all all all all all all all al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test Assignments |        | Groundwater Levels<br>Depth (Feet)<br>Samples | PHOTO<br>IONIZATION<br>DETECTOR<br>(PPM) | Torvane '<br>or<br>Penetrometer<br>Readings (TSF) | DATE: 4120106<br>TIME BEGINNING: 3:00<br>TIME ENDING: 3:15 |            | DRY AUGER: | 1.5′ |
| KEY REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/0-             | ) GRAB |                                               |                                          |                                                   | Olile Gray                                                 | 1 Silt Loc | í m        | .1   |
| THIN-WALLED TUBE HAND AUGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |        |                                               |                                          |                                                   | 34                                                         | often of f | boring     |      |
| THIN-WALLED TUBE HAND AUGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |        |                                               |                                          |                                                   |                                                            |            |            | · .  |
| THIN-WALLED TUBE HAND AUGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |        |                                               |                                          |                                                   |                                                            |            |            |      |
| THIN-WALLED TUBE HAND AUGER SPLIT-BARREL SAMPLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |        |                                               |                                          |                                                   |                                                            |            |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | THIN-  | WALLED TUE                                    |                                          | н                                                 | AND AUGER                                                  |            | REMARKS    |      |
| GROUNDWATER FIRST ENCOUNTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\boxtimes$      | SPLIT  | -BARREL S                                     | AMPLER                                   |                                                   |                                                            |            |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                | GROU   | NDWATER F                                     | IRST ENC                                 | DUNTERE                                           | )                                                          |            |            | ·    |

PYBURN & ODOM MCA

### APPENDIX F LABORATORY ANALYTICAL RESULTS AND CHAIN OF CUSTODY

i

Asbestos • Lead • Environmental • Materiais & Indoor Air Analysis

# **EMSL Analytical**

http://www.emsl.com

3 Cooper St. Westmont, NJ 08108 Phone: (856) 858-4800 Fax: (856) 858-4571



#### Attn: Harry Raynor Pyburn & Odom, Inc 8178 GSRI Avenue Baton Rouge, LA 70820

4/28/2006

Phone Fax: (713) 686-3645

> The following report covers the analysis performed on samples submitted to EMSL. Analytical on 4/21/2006. The results are tabulated on the attached data pages for the following client designated project:

The reference number for these samples is EMSL Order #010602145. Please use this reference when calling about these samples.

If you have any questions, please do not hesitate to contact me at (856) 858-4800.

Reviewed and Approved By:

Laboratory Director or other approved signatory NJ-NELAP Accredited:04653



test results contained within this report meet the requirements of NELAC /or the specific certification program that is applicable, unless otherwise noted.

Page 1 of 6

|                                                                            | (855) 858-4571 Em | all: sweason@emsi.con            | n<br>Nasia                                                | <u>. The second second</u> | Alexandra MCS (Kateronya)             | THE SEC.              | EMS             |
|----------------------------------------------------------------------------|-------------------|----------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-----------------|
| Atin: Harry Raynor<br>Pyburn & Odom,<br>8178 GSRI Avenu<br>Baton Rouge, LA | e                 |                                  | Customer ID;<br>Customer PO;<br>Received;<br>EMSL, Order; |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                       |                 |
| Fax: (713) 686-3645                                                        | Phone:            |                                  | EMSL Proj:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                       |                 |
| na siya a sa a sa a sa a sa a sa a sa a s                                  |                   |                                  | Report Date:                                              | 4/28/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2006                                  |                       |                 |
| Rent Sample Description SP-                                                |                   |                                  |                                                           | 0/2008<br>:00 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • • • • • • • • • • • • • • • • • • | Lab ID: 0001          | _               |
| 1997 B. C. Martinelle C. A.            |                   | Parameter                        | Concentration                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RL ,                                  | Analysis<br>Date/Time | Analyst         |
| LP Metals-Arsenic, TCLP                                                    | 60108             | Arsenic                          | <0.080                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.080 🗸                               | 4/25/2006 12:04 PM    | IAcevedo        |
| icv = 83%<br>LP Metals-Barium; TCLP                                        | 6010B             | Barium                           | <1.0                                                      | mg/L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0 🗸                                 | 4/25/2008 12:04 PM    | iAcavedo        |
| LP Metais-Cadmium, TCLP                                                    | 6010B             | Cadmium                          | <0.040                                                    | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.040 🗸                               | 4/25/2006 12:04 PM    | <b>IAcevedo</b> |
| LP Metals-Chromium, TCLP                                                   | 6010B             | Chromium                         | <0.10                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10 /                                | 4/25/2008 12:04 PM    | <b>IAcevedo</b> |
| RLs = 148% and 158%<br>LP Metals-Lead, TCLP                                | 6010B             | Lead                             | 0.20                                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10 🏹                                | 4/25/2006 12:04 PM    | 1Acevedo        |
| LP Metals-Selenium, TCLP                                                   | 6010B             | Selenium                         | <0.20                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20                                  | 4/25/2006 12:04 PM    | <b>IAcevedo</b> |
| LP Metals-Silver, TCLP                                                     | 6010B             | Silver                           | <0.10                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                  | 4/25/2006 12:04 PM    | IAcevedo        |
| CLP Metals-Mercury, TCLP                                                   | 7471A             | Mercury                          | <0.0020                                                   | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002 🗸                               | 4/25/2006 09:12 AM    | rferrer         |
| lent Sample Description SP-1                                               | -2                |                                  |                                                           | :0/2006<br>:00 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Lab ID: 0002          |                 |
| l.                                                                         | e e               | Recenteden                       | C                                                         | Talt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RL                                    | Analysis<br>Date/Time | Analyst         |
|                                                                            | Method            | <i>Parameter</i><br>Total Solids | Concentration<br>71                                       | Units<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                   | 4/24/2006 04:45 PM    | ssamayan        |
|                                                                            | 2540B             | 10[5] 20102                      | /1                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5<br>n/a                            | 4/27/2005 12:22 PM    | wfink           |

ļ

l

1

Page 2 of 6

1

Ţ

1

ļ

. . .

3 Cooper SL, Westmont, NJ 08108

Phone: (856) 858-4800 Fax: (856) 858-4571 Email: sweason@emal.com



| Fax:         (713) 686-3645         Phone:         EMSL Proj:           Report Date:         4/28/2006           Client Sample Description         SP-1-3         Collected:         4/20/2006                       | nalysi   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                      | nalvst   |
| Cliant Sample Description SP-1-3 Collected: 4/20/2006 Lab ID: 0003                                                                                                                                                   | nahest   |
| 10:55:00 AM                                                                                                                                                                                                          | nahest   |
|                                                                                                                                                                                                                      | •        |
| TCLP Metals-Arsenic, TCLP         6010B         Arsenic         <0.080         mg/L         0.080         4/25/2006         01:05         PM         I           Butilicani sample provided, As ICV = \$3%           | (Acevedo |
|                                                                                                                                                                                                                      | Acevedo  |
| TCLP Metals-Cadmium, TCLP 6010B Cadmium <0.040 mg/L 0.040 4/25/2006 01:05 PM I                                                                                                                                       | IAcevedo |
| CLP Metals-Chromium, TCLP         8010B         Chromium         <0.10         mg/L         0.10         4/25/2006         01:05         PM         I           Insufficient sample provided, Cr RLs = 148% and 158% | IAcevedo |
|                                                                                                                                                                                                                      | Acevedo  |
| TLP Metals-Selenium, TCLP 6010B Selenium <0.20 mg/L 0.20 4/25/2005 01:05 PM I<br>Insufficient sample provided.                                                                                                       | IAcevedo |
| TELP Metais-Silver, TCLP 6010B Silver <0.10 mg/L 0.10 4/25/2006 01:05 PM I                                                                                                                                           | IAcevedo |
| TCLP Metals-Mercury, TCLP 7471A Mercury <0.0020 mg/L 0.002 4/25/2006 09:12 AM r<br>Insufficient sample provided.                                                                                                     | rferrer  |
| lent Sample Description SP-1-4 Collected: 4/20/2006 Lab ID: 0004<br>10:55:00 AM                                                                                                                                      |          |
| Analysis<br>Method Parameter Concentration Units RL Date/Time Au                                                                                                                                                     | nalyst   |
| Total Solids 2540B Total Solids 79 % 0.5 4/24/2006 04:45 PM 5                                                                                                                                                        | ssamayam |
| SVOA 8270C See Attached n/a 4/27/2005 12:59 PM                                                                                                                                                                       | wfink    |

Page 3 of 6

ł

3 Cooper SL, Westmont, NJ 08109

Phone: (855) 858-4600 Fax: (856) 858-4671 Email: swasson@amsl.com



| Attn: Harry Raynor<br>Pyburn & Odom,<br>8178 GSRI Avenu<br>Baton Rouge, LA | Je     |              | Customer ID;<br>Customer PO;<br>Received;<br>EMSL Order; |                    |       | м                     |                              |
|----------------------------------------------------------------------------|--------|--------------|----------------------------------------------------------|--------------------|-------|-----------------------|------------------------------|
| Fex: (713) 685-3645                                                        | Phone: |              | EMSL Proj:                                               |                    |       |                       |                              |
|                                                                            |        |              | Report Date:                                             | 4/28/              | 2006  |                       |                              |
| Client Sample Description SP-                                              | 2-1    |              |                                                          | 20/2006<br>5:00 AM |       | Lab ID: 0005          |                              |
|                                                                            | Method | Parameter    | Concentration                                            | Units              | RL    | Analysis<br>Date/Time | Analyst                      |
| TCLP Metals-Arsenic, TCLP                                                  | 60108  | Arsenic      | <0.080                                                   | mg/L               | 0.080 | 4/25/2008 01:12 PM    | <b>IAcevedo</b>              |
| CLP Metais-Barlum, TCLP                                                    | 6010B  | Barium       | <1,0                                                     | mg/L               | 1.0   | 4/25/2006 01:12 PM    | iAcevedo                     |
| TCLP Metals-Cadmium, TCLP                                                  | 6010B  | Cadmium      | <0.040                                                   | mg/L               | 0.040 | 4/25/2006 01:12 PM    | IAcevedo                     |
| CLP Metals-Chromium, TCLP                                                  | 6010B  | Chromium     | <0.10                                                    | mg/L               | 0.10  | 4/25/2006 01:12 PM    | (Acevedo                     |
| CLP Metals-Lead, TCLP                                                      | 60109  | Lead         | <0.10                                                    | mg/L               | 0.10  | 4/25/2006 01:12 PM    | <b>IAcevedo</b>              |
| TCLP Metals-Selenium, TCLP                                                 | 6010B  | Selenium     | <0.20                                                    | mg/L               | 0.20  | 4/25/2006 01:12 PM    | <ul> <li>IAcevedo</li> </ul> |
| LP Metals-Silver, TCLP                                                     | 6010B  | Silver       | <0.10                                                    | mg/L               | 0.10  | 4/25/2006 01:12 PM    | IAcevedo                     |
| TCLP Metais-Mercury, TCLP                                                  | 7471A  | Mercury      | <0.0020                                                  | mg/L               | 0.002 | 4/25/2008 09:12 AM    | rferrør                      |
| lent Sample Description SP-                                                | 2-2    |              | -                                                        | 20/2006<br>5:00 AM |       | Lab ID: 0006          |                              |
| <b>.</b> ,                                                                 | Method | Parameter    | Concentration                                            | Units              | RL    | Analysis<br>Date/Time | Analyst                      |
| al Solids                                                                  | 2540B  | Total Solids | 78                                                       | %                  | 0.5   | 4/24/2006 04;45 PM    | ssamayam                     |
| SVQA                                                                       | 8270C  | See Attached |                                                          |                    | n/a   | 4/25/2006 11:29 AM    | wfink                        |
| ient Sample Description SP-                                                | 3-1    |              |                                                          | 20/2008<br>5:00 AM |       | Lab ID: 0007          |                              |
| <b>1</b>                                                                   | Method | Parametet    | Concentration                                            | Units              | RL    | Analysis<br>Date/Time | Analyst                      |
| Total Solids                                                               | 2540B  | Total Solids | 66                                                       | %                  | 0.5   | 4/24/2006 04:45 PM    | ssameyam                     |
|                                                                            |        |              | 00                                                       |                    | n/a   | 4/25/2008 12:06 PM    | wfink                        |
| SVOA                                                                       | 8270C  | See Attached |                                                          | <u>.</u>           | n/a   | 4/25/2006 12:06 PM    | whink                        |

and the bland of

COMPANY STATES OF STREET

Page 4 of 9

S Cooper St., Westmont, NJ 08108

Phone: (668) 858-4800 Fax: (856) 858-4571 Email: swesson@smail.com



Į.

1

ł

| Attn: Harry Raynor<br>Pyburn & Odom,<br>8178 GSRI Avenu<br>Baton Rouge, LA                                     | e                      |                                  | Customer (D:<br>Customer PO:<br>Received:<br>EMSL Order, |                    |                  |                                 |                     |
|----------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|----------------------------------------------------------|--------------------|------------------|---------------------------------|---------------------|
| Fax: (713) 686-3645                                                                                            | Phone:                 |                                  | EMSL Proj:                                               |                    |                  |                                 |                     |
|                                                                                                                |                        |                                  | Report Date:                                             | 4/28/              | 2006             |                                 |                     |
| Client Sample Description SP-                                                                                  | 3-2                    |                                  |                                                          | 20/2006<br>5:00 AM |                  | Lab ID: 0008                    |                     |
|                                                                                                                | Method                 | Parameter                        | Concentration                                            | Units              | RL.              | Analysis<br>Date/Time           | Analyst             |
|                                                                                                                |                        |                                  | <0.080                                                   |                    | 0,080            | 4/25/2006 01:20 FM              | IAcevedo            |
| TCLP Metals-Arsenic, TCLP                                                                                      | 6010B                  | Arsenic                          | <0.000                                                   | mg/L               | 0,000            | 4/25/2000 01.20 PW              |                     |
| CLP Metals-Barium, TCLP                                                                                        | 6010B                  | Barlum                           | <1.0                                                     | mg/L               | 1.0              | 4/25/2008 01:20 PM              | <b>IAcevedo</b>     |
| TCLP Metals-Cadmium, TCLP                                                                                      | 60108                  | Cedmium                          | <0.040                                                   | mg/L               | 0.040            | 4/25/2006 01:20 PM              | lÁcevedo            |
| TCLP Metala-Chromium, TCLP                                                                                     | 6010B                  | Chromium                         | <0.10                                                    | mg/L               | 0.10             | 4/25/2008 01:20 PM              | IAcevado j          |
| RLs = 148% and 158%                                                                                            |                        |                                  |                                                          | _                  |                  |                                 |                     |
| TCLP Metals-Lead, TCLP                                                                                         | 6010B                  | Lead                             | <0.10                                                    | mg/L               | 0.10             | 4/25/2006 01:20 PM              | Acevedo             |
| TCLP Metals-Selenium, TCLP                                                                                     | 6010B                  | Selenium                         | <0.20                                                    | rng/L              | 0.20             | 4/25/2006 01:20 PM              | <b>iAcavedo</b>     |
| LP Matals-Silver, TCLP                                                                                         | 60108                  | Silver                           | <0.10                                                    | mg/L               | 0.10             | 4/25/2006 01:20 PM              | Acevedo             |
| TCLP Metals-Mercury, TCLP                                                                                      | 7471A                  | Marcury                          | <0,0020                                                  | mg/L               | 0.002            | 4/25/2006 09:12 AM              | rferrer             |
| tient Sample Description SP-                                                                                   | 4-1                    |                                  |                                                          | 20/2006            |                  | Lab ID: 0009                    |                     |
| -                                                                                                              |                        |                                  |                                                          |                    |                  | Analysis                        | t-shirt             |
| a di seconda di second | Method                 | Parameter                        | Concentration                                            | Units              | RL               | Date/Time                       | Analyst             |
| LP Matals-Arsenic, TCLP                                                                                        | 6010B                  | Arsenic                          | <0.080                                                   | mg/L               | 0.080            | 4/25/2006 01:28 PM              | Acevedo             |
| As ICV = 93%                                                                                                   |                        | Barium                           | <1.0                                                     | mg/L               | 1.0              | 4/25/2006 01:28 PM              | <b>iAcevedo</b>     |
| LP Metals-Banum, TCLP                                                                                          | 6010B                  | Cadmium                          | <0.040                                                   |                    | 0.040            | 4/25/2006 01:28 PM              | [Acevedo            |
| P Metals-Cadmium, TCLP                                                                                         | 6010B                  |                                  |                                                          | mg/L               | 0.10             | 4/25/2008 01:28 PM              | Acavedo             |
| TCLP Metale-Chromium, TCLP                                                                                     | 6010B                  | Chromium                         | -9.15                                                    | t e talle per      |                  |                                 |                     |
| LP Metals-Lead, TCLP                                                                                           | 6010B                  | Lead                             | <0.10                                                    | mg/L               | 0.10             | 4/25/2006 01:28 PM              | lAcevedo            |
| CLP Metais-Selenium, TCLP                                                                                      | 6010B                  | Selenium                         | <0.20                                                    | mg/L               | 0.20             | 4/25/2006 01:28 PM              | IAcevedo            |
| TCLP Metals-Silver, TCLP                                                                                       | 6010B                  | Silver                           | <0.10                                                    | mg/L               | 0.10             | 4/25/2008 01:28 PM              | Acevedo             |
| LP Metals-Mercury, TCLP                                                                                        | 7471A                  | Mercury                          | <0.0020                                                  | mg/L               | 0.002            | 4/25/2008 09:12 AM              | rferrer             |
| Client Sample Description SP-                                                                                  | 4-2                    |                                  |                                                          | 20/2006<br>3:00 AM |                  | Lab ID: 0010                    |                     |
|                                                                                                                |                        |                                  |                                                          |                    |                  | Analysis                        |                     |
|                                                                                                                |                        |                                  |                                                          |                    |                  |                                 |                     |
| Test                                                                                                           | Method                 | Parameter                        | Concentration                                            | Unita              | RL               | Date/Time                       | Analyst             |
| Test<br>Tal Solids                                                                                             | <i>Method</i><br>2540B | <i>Parameter</i><br>Total Solids | Concentration<br>83                                      |                    | <i>RL</i><br>0.5 | Date/Time<br>4/24/2006 04:45 PM | Analyst<br>ssamoyam |

Page 5 of 6

3 Cooper St., Westmont, NJ 08108

Phone: (856) 858-4600 Fax: (856) 868-4571 Email: sweeson@amel.com



1915.000

| Attn: Harry Raynor<br>Pyburn & Odom,<br>8178 GSRI Avenu<br>Baton Rouge, LA | le     |              | Customer ID;<br>Customer PO;<br>Received;<br>EMSL Order; | PYOD<br>14-754<br>04/21/0<br>010602 | 76 9:29 AM | ·                                        |                     |
|----------------------------------------------------------------------------|--------|--------------|----------------------------------------------------------|-------------------------------------|------------|------------------------------------------|---------------------|
| Fax: (713) 686-3645                                                        | Phone: |              | EMSL Proj:                                               |                                     |            |                                          |                     |
| l                                                                          |        |              | Report Date:                                             | 4/28/20                             | 906        | •                                        |                     |
| Client Sample Description SP-                                              | 5-1    |              |                                                          | 20/2006                             |            | Lab 1D: 0011                             | <u> </u>            |
|                                                                            |        |              | 10:4                                                     | 4:00 AM                             |            |                                          |                     |
| 201                                                                        | Method | Parameter    | Concentration                                            | Units                               | RL.        | Analysis<br>Date/Time                    | Analyst             |
| CLP Metals-Arsenic, TCLP                                                   | 6010B  | Arseniç      | <0.080                                                   |                                     | 0.080      | 4/25/2006 01:35 PM                       | IAcevedo            |
| CLP Metais-Barium, TCLP                                                    | 60108  | Barlum       | <1.0                                                     | mg/L 🧹                              | 1.0        | 4/25/2006 01:35 PM                       | Acevedo             |
| CLP Metals-Cadmium, TCLP                                                   | 60108  | Cadmium      | <0.040                                                   | mg/L 🗸                              | 0.040      | 4/25/2008 01:35 PM                       | Acevedo             |
| CLP Metals-Chromium, TCLP<br>FLa = 148% and 158%                           | 6010B  | Chromium     | <0.10                                                    | mg/L                                | 0.10       | 4/25/2006 01:35 PM                       | IAcevedo            |
| CLP Metals-Lead, TCLP                                                      | 6010B  | Lead         | <0.10                                                    | mg/L                                | 0.10       | 4/25/2006 01:35 PM                       | IAcavedo            |
| CLP Metais-Selenium, TCLP                                                  | 6010B  | Selenium     | <0.20                                                    | mg/L                                | 0.20       | 4/25/2006 01:35 PM                       | Aceveda             |
| LP Metals-Silver, TCLP                                                     | 60108  | Silver       | <0.10                                                    | mg/L                                | 0.10       | 4/25/2006 01:35 PM                       | lAcevedo            |
| CLP Metals-Mercury, TCLP                                                   | 7471A  | Marcury      | <0.0020                                                  | mg/L                                | 0.002      | 4/25/2006 09:12 AM                       | rferrer             |
| lent Sample Description SP-                                                | 5-2    |              |                                                          | 20/2005<br>1:00 AM                  |            | Lab ID: 0012                             |                     |
|                                                                            | Method | Parameter    | <b>Concentration</b>                                     | Units                               | RL         | Analysis<br>Datc/Time                    | Analyst             |
| al Solids                                                                  | 2540B  | Total Solida | 79                                                       | ••••                                | 0.5        | 4/24/2006 04:45 PM                       | ssamayam            |
|                                                                            | 8270C  | See Attached |                                                          |                                     | n/a        | 4/25/2006 12:44 PM                       | wfink               |
| ent Sample Description SP-                                                 | 8-1    | -            |                                                          | 20/2006<br>):00 AM                  |            | I.ab ID: 0013                            |                     |
|                                                                            |        |              |                                                          |                                     |            | Analysis                                 | d as a faund        |
|                                                                            | Method | Parameter    | Concentration                                            | Units                               | RL<br>0.5  | Date/Time                                | Analyst<br>ssamayam |
| Total Solids                                                               | 25408  | Total Solids | 79                                                       | %                                   | 0.5<br>n/a | 4/24/2006 04:45 PM<br>4/25/2006 03:02 PM | wfink               |
| SMOA                                                                       | 8270C  | See Attached |                                                          |                                     |            | -12312000 V3.V2 FM                       | 11 10 HZ            |

Page 6 of 6

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                      |                          | Customer Sample#:                               | SP-1-2                     | 2                                   |            |
|----------------------|--------------------------|-------------------------------------------------|----------------------------|-------------------------------------|------------|
| Lab Name:            | EMSL Analytical Inc.     |                                                 |                            |                                     |            |
| EMSL Sample ID:      | 010602145-0002           | Project:                                        |                            |                                     |            |
| Lab File ID:         | C10680.D                 | Sample Matrix:                                  | Soils                      |                                     |            |
| instrument ID:       | MSD-C                    | Sampling Date:                                  | 4/20/2005                  |                                     |            |
| Analyst:             | WRF                      | Date Extracted:                                 | 4/24/2008                  |                                     |            |
| GC Column:           | ZB-5MS (0.25 mm)         | Analysis Date                                   | 4/27/2006 12               | :22:00                              |            |
| Level (low/med):     | LOW                      | Sample wt/vol:                                  | 30.04 G                    |                                     |            |
| % Moisture:          | 29                       | Dilution Factor:                                | 40                         |                                     | <u> </u>   |
| PH:                  |                          | Conc. Extract Volume:                           | 5000 (ul)                  | <u></u>                             |            |
| GPC Cleanup(Y/N):    | <u>N</u>                 | Injection Volume:                               | <u>1 (ป)</u>               |                                     | ·          |
| Method:              | 8270ABN                  |                                                 |                            |                                     |            |
| CAS NO               |                          | COMPOUND                                        | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)                       | q          |
| 62-75-9              | N-nitrosodimethylamine   | <u> </u>                                        | 9400                       | <u> </u>                            | <u>ü</u> ų |
| 108-95-2             | Phenol                   | ,<br>,                                          | 17000                      |                                     |            |
| 108-95-2             | Benzyl alcohol           | <u> </u>                                        | 19000                      | ┟───╴┼                              |            |
| 111-44-4             | bls(2-Chloroethyl)ether  | <u></u>                                         | 19000                      | <u>├</u> ───── <u>─</u> ─┤          |            |
| 95-57-8              | 2-Chlorophanol           |                                                 | 14000                      |                                     |            |
| 541-73-1             | 1.3-Dichlorobenzene      | <u> </u>                                        | 13000                      | <u> </u>                            |            |
| 106-46-7             | 1.4-Dichlorobanzene      |                                                 | 15000                      |                                     |            |
| 95-50-1              | 1.2-Dichlorobenzene      |                                                 | 18000                      | <u>├──</u> ── <u></u> -──- <u>}</u> |            |
| 95-48-7              | 2-Methylphenol           |                                                 | 17000                      | <u>├</u>                            |            |
| 95-48-7              | bis(2-chloraisopropyl)et | - <u></u>                                       | 17000                      |                                     | <u>au</u>  |
| 106-44-5             | 3+4-Methylphenol         |                                                 | 23000                      |                                     | UD         |
| 105-44-5<br>621-64-7 | N-Nitroso-Di-n-propylar  | nine                                            | 21000                      | h                                   | UD         |
|                      | Hexachioroethane         | , (), H ID                                      | 7400                       | <u> </u>                            |            |
| 67-72-1              |                          | <u>.</u>                                        | 18000                      |                                     |            |
| 98-95-3              | Nirobenzene              |                                                 | 16000                      |                                     | - <u></u>  |
| 78-59-1              | Isophorone               |                                                 | 20000                      | <u></u>                             |            |
| 88-75-5              | 2-Nitrophenol            |                                                 | 19000                      |                                     |            |
| 105-67-9             | 2,4-Dimethylphenol       | 16                                              | 18000                      | <u> </u>                            |            |
| 111-91-1             | bis(2-Chloroethoxy)met   | mane                                            | 18000                      | <u></u>                             |            |
| 120-83-2             | 2,4-Dichlorophenol       |                                                 | 18000                      | <u> </u>                            | <u>au</u>  |
| 120-82-1             | 1,2,4-Trichlorobenzene   |                                                 | 16000                      |                                     | D          |
| 91-20-3              | Naphthalene              |                                                 | 21000                      |                                     |            |
| 106-47-8             | 4-Chloroanline           |                                                 | 19000                      |                                     |            |
| 87-68-3              | Hexachlorobutadiena      |                                                 | 22000                      |                                     |            |
| 59-50-7              | 4-Chioro-3-methylphen    | Ol                                              | 18000                      |                                     |            |
| 91-58-7              | 2-Chloronaphthalene      | <u></u>                                         | 18000                      |                                     | UD         |
| 77-47-4              | Hexachiorocyclopentac    | liene                                           | 24000                      |                                     |            |
| 38-06-2              | 2,4,6-Trichlorophenol    |                                                 |                            |                                     |            |
| 95-95-4              | 2,4,5-Trichlorophenol    |                                                 | 21000                      | **                                  |            |
| 131-11-3             | Dimethylphthalate        | <u>م الم الم الم الم الم الم الم الم الم ال</u> | 17000                      |                                     | D          |
| 206-96-8             | Acenaphthylene           |                                                 | 16000                      |                                     |            |
| 06-20-2              | 2,6-Dinitrotoluene       |                                                 | 18000                      |                                     |            |
| 83-32-9              | Acenaphthene             |                                                 | 19000                      | 38000                               | D          |

FORM1-SV

Printed: 04/28/06 04:16:36 PM SampleList: 042706C ERM: C:\Program Files\EM\$L\_ENV\_Pest\PP+NJDEP.em 1 of 3

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                         | Customer Sample#:                      | SP-1-2                     |               |           |
|-------------------|-------------------------|----------------------------------------|----------------------------|---------------|-----------|
| Lab Name:         | EMSL Analytical Inc.    |                                        |                            |               |           |
| EM\$1, Sample 1D: | 010602145-0002          | Project:                               |                            |               |           |
| Lab File ID:      | C10660.D                | Sample Matrix:                         | Soils                      |               |           |
| Instrument ID:    | MSD-C                   | Sampling Date:                         | 4/20/2006                  |               |           |
| Analyst:          | WRF                     | Date Extracted:                        | 4/24/2006                  |               |           |
| GC Column:        | ZB-5MS (0.25 mm)        | Analysis Date                          | 4/27/2006 12               | 22:00         |           |
| Lavel (iow/mod):  | LOW                     | Sample wt/vol:                         | 30.04 G                    |               |           |
| % Moisture:       | 29                      | Dilution Factor:                       | 40                         |               |           |
| PH:               |                         | Conc. Extract Volume:                  | 5000 (ul)                  |               |           |
| GPC Cleanup(Y/N): | N                       | Injection Volume:                      | <u>1 (ul)</u>              |               |           |
| Method:           | 8270ABN                 |                                        |                            |               |           |
| CAS NO            |                         | COMPOUND                               | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg) | Q         |
| 51-28-5           | 2,4-Dinitrophenol       |                                        | 15000                      |               | UD        |
| 100-02-7          | 4-Nitrophenol           |                                        | 26000                      |               | UD        |
| 121-14-2          | 2.4-Dinitrotoluene      |                                        | 20000                      |               | QŲ        |
| 84-66-2           | Diethylphthalate        |                                        | 20000                      |               | UD        |
| 86-73-7           | Fluorene                |                                        | 17000                      | 220000        | D         |
| 7005-72-3         | 4-Chlorophenyl-phenyle  | ther                                   | 20000                      | <u> </u>      | <u>av</u> |
| 534-52-1          | 4,6-Dinitro-2-methylphe |                                        | 13000                      |               | UD        |
| 85-30-6           | n-Nitrosodlphenylamine  |                                        | 23000                      |               | UD        |
| 101-55-3          | 4-Bromophenyl-phanyle   | ······································ | 21000                      |               | UD        |
| 118-74-1          | Hexachiorobenzene       |                                        | 15000                      |               | UD        |
| 87-86-5           | Pentachlorophanol       |                                        | 21000                      |               | UD        |
| 85-01-08          | Phenanthrene            |                                        | 20000                      | 820000        | D         |
| 120-12-7          | Anthracerre             |                                        | 19000                      | 290000        | D         |
|                   |                         |                                        | 31000                      |               |           |
| 84-74-2           | DI-n-butylphihaiate     |                                        | 26000                      |               | 0         |
| 206-44-0          | Fluoranthene            |                                        | 100000                     |               |           |
| 92-87-5           | Benzidine               |                                        | 20000                      |               | <u>D</u>  |
| 129-00-0          | Pyrene                  |                                        | 23000                      |               |           |
| 85-68-7           | Butylbenzylphthalate    |                                        | 25000                      | <u></u>       | D         |
| 56-55-3           | Benzo[a]anthracene      |                                        | 82000                      |               |           |
| 81-94-1           | 3,3'-Dichlorobenzidine  |                                        |                            |               | D         |
| 218-01-9          | Chrysene                |                                        | 21000                      |               |           |
| 117-81-7          | bis(2-Ethylhexy/)phthal | ale                                    | 23000                      |               | 00<br>qu  |
| 117-84-0          | Di-n-octylphthalate     |                                        | 22000                      |               |           |
| 205-99-2          | Benzo[b]fluoranthene    |                                        | 19000                      |               |           |
| 207-08-9          | Benzo(k)fluoranthene    |                                        | 22000                      | <u> </u>      | D         |
| 50-32-8           | Benzo[a]pyrene          | ······································ | 22000                      |               |           |
| 193-39-5          | Indeno[1,2,3-cd]pyrene  |                                        | 23000                      |               | <u>D</u>  |
| 53-70-3           | Dibenz[a,h]anthracene   |                                        | 25000                      | p             | D         |
| 191-24-2          | Benzolg.h.ijpendene     |                                        | 24000                      | 110000        | D         |

FORM1-SV

----

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Customer Sample#:     | SP-1-       | 2                                      |   |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|----------------------------------------|---|
| Lab Name;         | e: <u>EMSL Analytical Inc.</u><br>mple ID: <u>010602145-0002</u> Project:<br>D: <u>C10860.D</u> Sample Matrix: <u>Soils</u><br>nt ID: <u>MSD-C</u> Sampling Date: <u>4/20/2006</u><br><u>WRF</u> Date Extracted: <u>4/24/2006</u><br>nn: <u>ZB-5MS (0.25 mm</u> ) Analysis Date <u>4/27/2006 12:22:00</u><br>w/med): <u>LOW</u> Sample wt/vol: <u>30.04 G</u><br>re: <u>29</u> Dilution Factor; <u>40</u><br><u>Conc. Extract Volume</u> : <u>5000 (ul)</u><br>inup(Y/N): <u>N</u> Injection Volume: <u>1 (ul)</u><br><u>8270ABN</u> |                       |             |                                        |   |
| EMSL Sample (D;   | 010602145-0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project:              |             |                                        |   |
| Lab Flie ID:      | C10660.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Matrix:        | Soils       |                                        |   |
| Instrument ID:    | MSD-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampling Date:        | 4/20/2008   | ······································ | · |
| Analyst:          | WRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 4/24/2006   | · · · · · · · · · · · · · · · · · · ·  |   |
| GC Column:        | ZB-5MS (0.25 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysia Date         | 4/27/2006 1 | 2:22:00                                |   |
| Level (low/med):  | LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample wt/vol:        | 30.04 G     | · · · · · · · · · · · · · · · · · · ·  |   |
| % Moisture:       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dilution Factor:      | 40          | · · · · ·                              |   |
| PH:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conc. Extract Volume: | 5000 (ul)   |                                        |   |
| GPC Cleanup(Y/N): | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Injection Volume:     |             |                                        | - |
| Method:           | 8270ABN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>              |             |                                        |   |
| CAS NO            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COMPOUND              | Limit       | CONC. (µg/Kg)                          | Q |

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

÷

----

. .... ...

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                          | Customer Sample#:                      | SP-1-4                     | Ļ                                            |          |
|-------------------|--------------------------|----------------------------------------|----------------------------|----------------------------------------------|----------|
| Lab Name:         | EMSL Analytical Inc.     |                                        |                            |                                              |          |
| EMSL, Sample ID:  | 010602145-0004           | Project:                               |                            |                                              |          |
| Lab File ID:      | C10661.D                 | Sample Matrix:                         | Soils                      |                                              |          |
| Instrument ID:    | MSD-C                    | Sampling Date:                         | 4/20/2006                  |                                              |          |
| Analyst:          | WRF                      | Date Extracted:                        | 4/24/2006                  |                                              |          |
| GC Column:        | ZB-5MS (0.25 mm)         | Analysis Date                          | 4/27/2006 12               | :59:00                                       |          |
| Level (low/med):  | LOW                      | Sample wt/vol:                         | 30.02 G                    |                                              | <u>_</u> |
| % Moisture:       | 21                       | Dilution Factor:                       | 100                        |                                              |          |
| PH:               |                          | Conc. Extract Volume:                  | 5000 (ul)                  |                                              |          |
| GPC Cleanup(Y/N): | N                        | Injection Volume:                      | 1 (ui)                     |                                              |          |
| Method:           | 8270ABN                  |                                        |                            |                                              |          |
| CAS NO            |                          | COMPOUND                               | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)                                | Q        |
| 62-75-9           | N-nitrosodimethylamine   |                                        | 21000                      | · · · · · · · · · · · · · · · · · · ·        | ŰD       |
| 108-95-2          | Phenoi                   |                                        | 39000                      |                                              | UD       |
| 100-51-8          | Benzyl alcohol           |                                        | 43000                      |                                              | 00       |
| 111-44-4          | bis(2-Chloroethyl)ether  |                                        | 42000                      |                                              | UD       |
| 95-57-8           | 2-Chlorophenol           |                                        | 31000                      |                                              | UD       |
| 541-73-1          | 1,3-Dichlorobenzene      |                                        | 30000                      |                                              | מט       |
| 106-46-7          | 1,4-Dichlorobenzene      |                                        | 33000                      |                                              | UD       |
| 95-50-1           | 1,2-Dichlorobenzane      | · · · · · · ·                          | 42000                      |                                              | UD       |
| 95-48-7           | 2-Methylphenol           |                                        | 38000                      |                                              | ŲΦ       |
| 108-60-1          | bis(2-chloroisopropyl)et | her                                    | 39000                      |                                              | UD       |
| 106-44-5          | 3+4-Methylphenol         |                                        | 51000                      | 31000                                        | JD       |
| 821-64-7          | N-Nitroso-Di-n-propylan  | nine                                   | 47000                      |                                              | ŲΟ       |
| 67-72-1           | Hexachloroethane         |                                        | 17000                      |                                              | UÐ       |
| 98-96-3           | Nitrobonzene             | · ···································· | 36000                      |                                              | VÞ       |
| 78-59-1           | Isophorone               |                                        | 35000                      | [                                            | UD       |
| 88-75-5           | 2-Nitrophenol            |                                        | 44000                      |                                              |          |
| 105-67-9          | 2,4-Dimethylphenol       |                                        | 42000                      | 40000                                        | JD       |
| 111-91-1          | bis(2-Chloroethoxy)met   | hane                                   | 40000                      |                                              | UD       |
| 120-83-2          | 2,4-Dichlorophenoi       |                                        | 36000                      |                                              | UD       |
| 120-82-1          | 1,2,4-Trichlorobenzana   |                                        | 40000                      |                                              | UD       |
| 91-20-3           | Naphthalene              |                                        | 37000                      | 1200000                                      | D        |
| 106-47-8          | 4-Chioroaniline          | <u></u>                                | 47000                      |                                              | UD       |
| 87-58-3           | Hexachiorobutadiene      | <u></u>                                | 43000                      |                                              | QŲ       |
| 59-50-7           | 4-Chloro-3-methylphen    | ol                                     | 50000                      | <u>↓                                    </u> | UD       |
| 91-58-7           | 2-Chloronaphthalene      |                                        | 41000                      |                                              | UD       |
| 77-47-4           | Hexachlorocyclopentad    | liene                                  | 36000                      | <u> </u>                                     | UD       |
| 58-06-2           | 2,4,6-Trichlorophenol    |                                        | 63000                      |                                              | ψÞ       |
| <u></u>           | 2,4,5-Trichlorophenol    |                                        | 47000                      | <u></u>                                      | UD       |
| 95-95-4           | Directhylphthalate       | <u></u>                                | 38000                      |                                              | UD       |
| 131-11-3          |                          |                                        | 36000                      |                                              | D        |
| 208-96-8          | Acenaphthylene           | <u> </u>                               | 40000                      |                                              | UD       |
| 608-20-2          | 2,6-Dinitrotoluene       |                                        | 42000                      |                                              | 0        |

Printed: 04/28/06 04:24:00 PM

FORM1-SV

SampleList: 042706C ERM: C:\Program Files\EMSL\_ENV\_PestiPP+NJDEP.erm

1 of 3

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                     |                          | Customer Sample#:                             | SP-1-4                     | ļ              |    |
|---------------------|--------------------------|-----------------------------------------------|----------------------------|----------------|----|
| Lab Name:           | EMSL Analytical inc.     |                                               |                            |                |    |
| EMSL Sample ID:     | 010602145-0004           | Project:                                      |                            |                | _  |
| Lab File ID:        | C10661,D                 | Sample Matrix:                                | Soils                      |                |    |
| instrument ID:      | MSD-C                    | Sampling Date:                                | 4/20/2006                  |                |    |
| Analyst             | WRF                      | Date Extracted:                               | 4/24/2008                  |                |    |
| GC Column:          | ZB-5M\$ (0.25 mm)        | Analysis Date                                 | 4/27/2006 12               | 59:00          |    |
| Level (low/med):    | LOW                      | Sample wt/vol:                                | 30.02 G                    |                |    |
| % Moisture:         | 21                       | Dilution Factor:                              | 100                        |                |    |
| PH:                 |                          | Conc. Extract Volume:                         | 5000 (ul)                  |                |    |
| GPC Cleanup(Y/N):   | <u>N</u>                 | Injection Volume:                             | 1 (ul)                     |                |    |
| Method:             | 8270ABN                  |                                               |                            |                |    |
| CAS NO              |                          | COMPOUND                                      | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)  | Q  |
| 51-28-8             | 2,4-Dinitrophenol        | · · · · · · · · · · · · · · · · · · ·         | 34000                      |                | ÛD |
| 100-02-7            | 4-Nitrophenol            |                                               | 58000                      |                | UD |
| 121-14-2            | 2,4-Dinitrotoluene       |                                               | 46000                      |                | UD |
| 84-66-2             | Diethylphthalate         |                                               | 46000                      |                | UD |
| 86-73-7             | Fiuorene                 |                                               | 37000                      | 570000         | D  |
| 7005-72-3           | 4-Chlorophenyl-phenyle   | ther                                          | 46000                      |                | UD |
| 534-52-1            | 4,6-Dinitro-2-methylphe  |                                               | 28000                      |                | UD |
| 86-30-6             | n-Nitrosodiphenylamine   | , <u> </u>                                    | 52000                      |                | ŪŪ |
| 101-55-3            | 4-Bromaphenyl-phenyle    | ther                                          | 46000                      |                | UD |
| 118-74-1            | Hexachlorobenzene        |                                               | 33000                      |                | UD |
| 87-86-5             | Pentachlorophenol        |                                               | 48000                      |                | UD |
| 85-01-08            | Phenanthrene             | ······································        | 48000                      | 2100000        | D  |
| 120-12-7            | Anthracene               |                                               | 43000                      | 680000         | D  |
| 84-74-2             | Di-n-butyiphthalate      | <u>.                                    </u>  | 71000                      | !              | UD |
| 206-44-0            | Euoranthene              |                                               | 57000                      | 1500000        | 0  |
| 92-87-5             | Benzidine                |                                               | 230000                     |                | UD |
| 129-00-0            | Рутеле                   | <u></u>                                       | 45000                      | 1100000        | D  |
| 85-68-7             | Butylbenzylphthalete     |                                               | 52000                      | <u>├───</u> ─  | ŲΡ |
| 56-55-3             | Benzo(a)anthracene       |                                               | 55000                      | 810000         | D  |
| 91-94-1             | 3,3'-Dichlorobenzidine   | · <u>·····</u> ······························ | 180000                     |                | UD |
| 218-01-9            | Chrysene                 |                                               | 47000                      | 530000         | D  |
| 117-81-7            | bis(2-Ethylhexyl)phthala |                                               | 51000                      | i              | άĥ |
| 117-84-0            | Di-n-octylphthalate      |                                               | 50000                      | <u>├</u> ───── | UD |
| 205-99-2            | Benzo[b]fluoranthene     | ······                                        | 42000                      | 500000         | D  |
| 207-08-9            | Benzo(k)fluoranthene     |                                               | 49000                      | 180000         | D  |
| 50-32-8             | Benzo(a)pyrene           |                                               | 50000                      |                | D  |
| 193-39-5            | Indeno[1,2,3-cd]pyrene   |                                               | 52000                      |                | D  |
|                     | Dibenz[a,h]anthracene    |                                               | 56000                      | itt            | UD |
| 53-70-3<br>191-24-2 | Benzojg.h,ijperylene     |                                               | 55000                      |                | D  |

FORM1--SV

æ

.

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                                                                                                                                     |                                        | Customer Sample#:                                              | SP-1-                      | 4             |   |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|----------------------------|---------------|---|
| Lab Name:<br>EMSL Sample iD:                                                                                                        | EMSL Analytical Inc.<br>010602145-0004 | Project:                                                       |                            |               | _ |
| Lab File ID:                                                                                                                        | C10661.D                               | Sample Matrix:                                                 | Soils                      |               |   |
| Instrument ID:                                                                                                                      | MSD-C                                  | Sampling Date:                                                 | 4/20/2006                  |               |   |
| Analyst:                                                                                                                            | WRF                                    | Date Extracted:                                                | 4/24/2006                  |               |   |
| GC Column:                                                                                                                          | ZB-5MS (0.25 mm)                       | Analysis Date                                                  | 4/27/2006 1                | 2:59:00       |   |
| Level (low/med):                                                                                                                    | LOW                                    | Sample wt/vol:                                                 | 30.02 G                    |               |   |
| % Moisture:                                                                                                                         | 21                                     | Dilution Factor:<br>Conc. Extract Volume:<br>Injection Volume: | 100<br>5000 (ul)<br>1 (ul) |               |   |
| PH:                                                                                                                                 | N                                      |                                                                |                            |               |   |
| GPC Cleanup(Y/N):                                                                                                                   |                                        |                                                                |                            |               |   |
| Method:                                                                                                                             | 8270ABN                                |                                                                |                            |               |   |
| CAS NO                                                                                                                              |                                        | COMPOUND                                                       | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg) | Q |
| Qualifier Definitions<br>U = Undetected<br>B = Compound detected<br>E = Estimated value<br>J = Estimated concentrat<br>D = Dilution |                                        |                                                                |                            |               |   |

1

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                          | Customer Sample#:                      | SP-2-2                      | 2              |    |
|-------------------|--------------------------|----------------------------------------|-----------------------------|----------------|----|
| Lab Name:         | EMSL Analytical Inc.     |                                        |                             |                |    |
| EMSL Sample ID;   | 010602145-0006           | Project:                               |                             |                |    |
| Lab File 10:      | C10647.D                 | Sample Matrix:                         | Solls                       |                |    |
| instrument iD:    | MSD-C                    | Sampling Date:                         | 4/20/2006                   |                |    |
| Analyst:          | WRF                      |                                        |                             |                |    |
| GC Column:        | ZB-5MS (0.25 mm)         | Analysis Date                          | 4/25/2006 11                | :29:00         |    |
| Level (low/med):  | LOW                      | Sample wt/vol:                         | 30.03 G                     |                |    |
| % Moisture:       | 22                       | Dilution Factor:                       | 10                          |                |    |
| PH:               |                          | Conc. Extract Volume:                  | 1000 (ul)                   |                |    |
| GPC Cleanup(Y/N): | <u>N</u>                 | Injection Volume:                      | <u>1 (uł)</u>               |                |    |
| Method:           | 8270ABN                  |                                        |                             |                |    |
| CAS NO            |                          | COMPOUND                               | Report<br>Limit<br>∹(µg/Kg) | CONC. (µg/Kg)  | Q  |
| 62-75-9           | N-nitrosodimethylamine   | )                                      | 430                         |                | UD |
| 108-95-2          | Phenol                   |                                        | 790                         |                | UD |
| 100-61-6          | Benzyl alcohol           | - <u></u>                              | 860                         |                | QŲ |
| 111-44-4          | bis(2-Chloroethyl)ether  | ** <u>*</u> ***********************    | 850                         |                | UD |
| 95-57-8           | 2-Chlorophenol           |                                        | 640                         |                | ŲD |
| 541-73-1          | 1,3-Dichlarobenzene      | · · · · · · · · · · · · · · · · · · ·  | 610                         |                | UD |
| 105-46-7          | 1,4-Dichlorobenzene      |                                        | 660                         |                | UD |
| 95-50-1           | 1,2-Dichlorobenzene      |                                        | 840                         |                | UD |
| 95-48-7           | 2-Methylphenol           |                                        | 770                         |                | UD |
| 108-60-1          | bis(2-chloroisopropyl)et | ther                                   | 780                         |                | UD |
| 108-44-5          | 3+4-Methylphenol         |                                        | 1000                        |                | UD |
| 621-64-7          | N-Nitroso-Di-n-propylar  | nine                                   | 950                         |                | ŲD |
| 67-72-1           | Hexachloroethane         |                                        | 340                         |                | QU |
| 98-95-3           | Nitrobenzene             |                                        | 730                         |                | UD |
| 78-59-1           | Isophorane               | ··                                     | 710                         |                | ŲD |
| 88-75-5           | 2-Nitrophenol            |                                        | 890                         |                | ŪD |
| 105-67-9          | 2,4-Dimethylphenol       |                                        | 850                         |                | QU |
| 111-91-1          | bis(2-Chloroethoxy)me    | thane                                  | 810                         |                | GŲ |
| 120-83-2          | 2,4-Dichlorophenol       |                                        | 730                         | j j            | UD |
| 120-82-1          | 1,2,4-Trichiorobenzene   |                                        | 820                         |                |    |
| 91-20-3           | Naphthalene              | ·                                      | 740                         |                | UD |
| 106-47-8          | 4-Chloroaniline          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 950                         |                | UD |
| 87-68-3           | Hexachlorobutadiene      |                                        | 860                         | j <del>"</del> | ÛD |
| 59-50-7           | 4-Chloro-3-methylphen    |                                        | 1000                        | ,              | ŲD |
| 91-58-7           | 2-Chloronaphthelene      |                                        | 830                         |                | UD |
| 77-47-4           | Hexachiorocyclopentad    | tiene                                  | 740                         |                | UD |
| 88-06-2           | 2,4,6-Trichlorophenol    |                                        | 1100                        |                | QU |
| 95-95-4           | 2,4,5-Trichlorophenol    |                                        | 960                         |                | UD |
| 131-11-3          | Dimethylphthalate        |                                        | 760                         |                | UD |
| 208-96-8          | Acenaphihylene           |                                        | 730                         | 2              | au |
| 608-20-2          | 2,6-Dinitratoluene       |                                        | 820                         |                | UD |
| 83-32-9           | Acchaphthene             |                                        | 850                         |                | UD |

Printed: 04/26/06 09:25:46 AM SampleList: 042506C ERM: C:\Program Files\EMSL\_ENV\_Pest\PP+NJDEP.erm FORM1-SV

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                         | Customer Sample#;                      | SP-2-2                     | •             |    |
|-------------------|-------------------------|----------------------------------------|----------------------------|---------------|----|
| Lab Name:         | EMSL Analytical Inc.    |                                        |                            |               |    |
| EMSL Sample ID:   | 010602145-0008          | Project:                               |                            |               |    |
| Lab File ID:      | C10647.D                | Sample Matrix:                         | Soils                      |               |    |
| Instrument ID:    | MSD-C                   | Sampling Date:                         | 4/20/2006                  |               |    |
| Analyst:          | WRF                     | Date Extracted:                        | 4/24/2006                  |               |    |
| GC Column:        | ZB-5MS (0.25 mm)        | Analysis Date                          | 4/25/2006 11               | :29:00        |    |
| Level (low/med);  | LOW                     | Sample wt/vol:                         | 30.03 G                    | ······        |    |
| % Moisture:       | 22                      | Dilution Factor:                       | 10                         |               |    |
| PH:               | <u> </u>                | Conc. Extract Volume:                  | 1000 (ul)                  |               | —· |
| GPC Cleanup(Y/N): | <u>N</u>                | Injection Volume:                      | 1 (ul)                     | - •           |    |
| Method:           | 8270ABN                 |                                        |                            |               |    |
| CAS NO            |                         | COMPOUND                               | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg) | Q  |
| 51-28-5           | 2,4-Dinitrophenol       |                                        | 680                        |               | Up |
| 100-02-7          | 4-Nitrophenol           |                                        | 1200                       |               | UD |
| 121-14-2          | 2,4-Dinitrotoluene      |                                        | 930                        |               | ŪD |
| 84-66-2           | Diethylphthalate        | ······································ | 930                        |               | μD |
| 86-73-7           | Fluorene                |                                        | 760                        |               | UD |
| 7005-72-3         | 4-Chiorophenyl-phenyle  | ether                                  | 920                        |               | ŪD |
| 534-52-1          | 4,6-Dinitro-2-methylphe | lonol                                  | 570                        |               | ÛD |
| 86-30-6           | n-Nitrosodiphenylamina  | }                                      | 1000                       |               | υp |
| 101-55-3          | 4-Bromophenyl-phenyl    | ether                                  | 940                        |               | ŪD |
| 118-74-1          | Hexachtorobenzene       |                                        | 570                        |               | UD |
| 87-86-5           | Pentachlorophenol       |                                        | 980                        |               | ŲĎ |
| 85-01-08          | Phenanthrene            |                                        | 930                        | 760           | JD |
| 120-12-7          | Anthracene              | <u></u>                                | 860                        |               | কা |
| 84-74-2           | Di-n-butylphthalate     | ,,,,,,,,                               | 1400                       |               | ŰÐ |
| 208-44-0          | Fluoranthene            |                                        | 1200                       | 2000          | D  |
| 92-87-5           | Senzidine               |                                        | 4600                       |               | νÞ |
| 129-00-0          | Pyrane                  |                                        | 920                        | 1800          | D  |
| 85-68-7           | Butylbenzylphthalate    |                                        | 1100                       |               | UD |
| 56-55-3           | Benzo[a]anthracene      |                                        | 1100                       | 2100          | Þ  |
| 91-94-1           | 3,3'-Dichlorobenzidine  |                                        | 3700                       | 1             | UD |
| 218-01-9          | Chrysene                |                                        | 940                        | 1900          | D  |
| 117-81-7          | bis(2-Ethylhexyl)phthal |                                        | 1000                       |               | UD |
| 117-84-0          | Di-n-octylphthalate     |                                        | 1000                       |               | ŰD |
| 205-99-2          | Benzo(b)fluoranthene    |                                        | 850                        | 2400          | Ø  |
| 207-08-9          | Benzo[k]fluoranthene    |                                        | 990                        | 880           | QL |
| 50-32-8           | Banzo[a]pyrene          | <u></u>                                | 1000                       | 2100          | D  |
| 193-39-5          | Indeno(1,2,3-cd)pyrene  |                                        | 1100                       | 1300          | D  |
| 53-70-3           | Dibenz(a,h)anthracene   |                                        | 1100                       |               | UD |
| 191-24-2          | Benzo(g,h,i)perylene    | <u></u>                                | 1100                       | 1200          | D  |

FORM1-SV

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| _ <u> </u>                                                                                                                         |                                        | Customer Sample#:                                              | SP-2-2                               | 2             |            |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|--------------------------------------|---------------|------------|
| Lab Name:<br>EMSL Sample ID:                                                                                                       | EMSL Analytical Inc.<br>010602145-0006 | Project:                                                       |                                      |               |            |
| Lab File ID:                                                                                                                       | C10647.D                               | Sample Matrix:                                                 | Soils                                |               | •          |
| instrument ID:                                                                                                                     | MSD-C                                  | Sampling Date:                                                 | 4/20/2006                            |               |            |
| Analyst:                                                                                                                           | WRF                                    | Date Extracted:                                                | 4/24/2006                            |               |            |
| GC Column:                                                                                                                         | ZB-5MS (0.25 mm)                       | Analysis Date                                                  | 4/25/2006 1                          | 1:29:00       |            |
| Level (low/med):                                                                                                                   | LOW                                    | Sample wt/vol:                                                 | 30.03 G<br>10<br>1020 (ul)<br>1 (ul) |               |            |
| % Moisture:                                                                                                                        | 22<br>N                                | Dilution Factor:<br>Conc. Extract Volume:<br>Injection Volume: |                                      |               |            |
| PH                                                                                                                                 |                                        |                                                                |                                      |               |            |
| GPC Cleanup(Y/N):                                                                                                                  |                                        |                                                                |                                      |               |            |
| Method:                                                                                                                            | 8270ABN                                |                                                                |                                      |               |            |
| CAS NO                                                                                                                             |                                        | COMPOUND                                                       | Report<br>Limit<br>(µg/Kg)           | CONC. (µ9/Kg) | Q          |
| Qualifier Definitions<br>U = Undetected<br>B = Compound detected<br>E = Estimated value<br>J = Estimated concentra<br>D = Dilution |                                        | · · ·                                                          |                                      |               | <b>,</b> , |

FORM1--SV

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|      |               |             |                          | Customer Sample#:                      | SP-3-1                     |                                  |           |
|------|---------------|-------------|--------------------------|----------------------------------------|----------------------------|----------------------------------|-----------|
| ۴ ı  | .ab Name:     |             | EMSL Analytical Inc.     |                                        |                            |                                  |           |
| je   | MSL Sample    | ID:         | 010602145-0007           | Project:                               |                            |                                  |           |
| lι   | ab File ID:   |             | C10648.D                 | Sample Matrix:                         | Sols                       |                                  |           |
| 1    | nstrument ID: |             | MSD-C                    | Sampling Date:                         | 4/20/2006                  |                                  |           |
| 1    | nalyst:       |             | WRF                      | Date Extracted:                        | 4/24/2006                  |                                  |           |
|      | SC Column:    |             | ZB-5MS (0.25 mm)         | Analysis Date                          | 4/25/2006 12               | :06:00                           |           |
| ll.  | .evel (low/me | ď):         | LOW                      | Sample wt/vol:                         | 30.01 G                    |                                  |           |
|      | 4 Moisture:   |             | 34                       | Dilution Factor:                       | 10                         |                                  |           |
| F    | <b>ካዘ:</b>    |             | <u>.</u>                 | Conc. Extract Volume:                  | 5000 (ul)                  |                                  |           |
| ł    | SPC Cleanup(  | Y/N):       | N                        | Injection Volume:                      | 1 (ul)                     |                                  |           |
| N    | Aethod:       |             | 8270ABN                  |                                        | _                          |                                  |           |
|      | CASI          | IO          |                          | COMPOUND                               | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)                    | Q         |
| h    | 62-75-9       |             | N-nitrosodimethylamine   |                                        | 2500                       |                                  | UD        |
| Ľ    | D8-95-2       | <u>├~──</u> | Phanol                   | ······································ | 4600                       | <u> </u> - <u></u>               | UD        |
| IL.  | 00-51-6       |             | Benzyl alcohol           | <u> </u>                               | 5100                       |                                  | UD        |
| Ľ    | 11-44-4       | ┟──┈─       | bis(2-Chloroethyl)ether  |                                        | 5000                       |                                  |           |
| ۱.   |               |             | 2-Chlorophenol           | - <u> </u>                             | 3800                       | L                                | UD        |
| 1    | 5-57-8        | ļ           |                          |                                        | 3600                       | ┟╴ <u></u>                       |           |
| Ľ    | 41-73-1       | <u>}</u>    | 1,3-Dichlorobenzene      |                                        | 3900                       |                                  |           |
| -1   | 06-46-7       | <br>        | 1,4-Dichlorobenzene      | ·····                                  | 5000                       |                                  |           |
| L    | 15-50-1       |             | 1,2-Dichlorobenzene      |                                        |                            | <u></u>                          |           |
| Т    | 5-48-7        | <u> </u>    | 2-Methylphanol           |                                        | 4500                       | \$+                              |           |
| 11   | 08-60-1       |             | bis(2-chloroisopropyl)et | her                                    | 4600                       | L                                |           |
| 17   | 08-44-5       |             | 3+4-Methylphenol         |                                        | 6100                       |                                  | 00        |
| e    | 21-64-7       |             | N-Nitroso-Di-n-propylan  | าไกะ                                   | 5600                       | <u>+</u>                         | UD        |
| I    | 57-72-1       |             | Hexachloroethane         |                                        | 2000                       | l                                | UD        |
| S    | 8-95-3        | <u> </u>    | Nitrobenzene             |                                        | 4300                       |                                  | <u>UD</u> |
| 7    | 8-59-1        |             | Isophorone               |                                        | 4200                       |                                  | UD        |
| ł    | 38-75-5       | †           | 2-Nitrophenol            |                                        | 5300                       |                                  | UD        |
| h    | 05-67-9       | <u> </u>    | 2,4-Dimethylphenol       |                                        | 5000                       |                                  | UD        |
| Þ    | 111-91-1      |             | bis(2-Chlorcethoxy)met   | hane                                   | 4800                       |                                  | ŲÞ        |
| K .  | 20-83-2       |             | 2,4-Dichiorophenol       |                                        | 4300                       |                                  | UD        |
| - L- | 20-82-1       | ┼┈━╌╌╴      | 1,2,4-Trichlorobanzene   |                                        | 4800                       |                                  | UD        |
|      | 31-20-3       | +           | Naphthalene              |                                        | 4400                       | 4600                             | D         |
|      | 08-47-8       | ┼───        | 4-Chloroaniline          |                                        | 5800                       | i                                | UD        |
| - i. | 37-68-3       | +           | Haxachlorobutadiene      |                                        | 5100                       | ,                                | UD        |
|      | 59-50-7       | -{·         | 4-Chloro-3-methylphen    |                                        | 6000                       |                                  | ŲΡ        |
|      |               | <b>↓</b>    | 2-Chioronaphthalene      |                                        | 4900                       | <u></u>                          | UD        |
| -1   | 91-58-7       | <u> </u>    |                          |                                        | 4400                       |                                  | UD_       |
| Δ.   | 17-47-4       | <u> </u>    | Hexachlorocyclopentad    |                                        |                            | ↓÷                               | UD        |
|      | 88-06-2       | <u> </u>    | 2,4,6-Trichlorophenol    |                                        |                            | +                                | UD        |
| Ŀ    | 95-95-4       |             | 2,4,5-Trichlorophenol    |                                        | 4500                       |                                  | - <u></u> |
|      | 131-11-3      |             | Dimethylphthalate        |                                        |                            | بالديجوم بري ورير مربو يوسي سيال | p         |
| ľ    | 208-96-8      |             | Acanaphthylene           |                                        | 4300                       |                                  |           |
| 1    | 806-20-2      |             | 2,8-Dinitrataluene       |                                        | 4800                       |                                  |           |
| _],  | 83-32-9       | 1           | Acenaphthene             |                                        | 5000                       | 4800                             | JU        |

FORM1--SV

Printed: 04/26/06 04:17:21 PM SampleList: 042506C ERM: C:\Program Files\EMSL\_ENV\_Pest\PP+NJDEP.erm 1 of 3

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                          | Customer Sample#:                     | SP-3-1                     |                                         |     |
|-------------------|--------------------------|---------------------------------------|----------------------------|-----------------------------------------|-----|
| Lab Name:         | EMSL Analytical Inc.     |                                       |                            |                                         |     |
| EMSL Sample ID:   | 010602145-0007           | Project:                              |                            |                                         |     |
| Lab File ID:      | C10648.D                 | Sample Matrix:                        | Soils                      |                                         |     |
| instrument ID;    | MSD-C                    | Sampling Date:                        | 4/20/2006                  |                                         |     |
| Analyst:          | WRF                      | Date Extracted:                       | 4/24/2006                  |                                         |     |
| GC Column:        | ZB-5MS (0.25 mm)         | Analysis Date                         | 4/25/2006 12               | :06:00                                  |     |
| Levei (low/med):  | LØW                      | Sample wt/vol;                        | 30.01 G                    |                                         |     |
| % Moisture:       | 34                       | Dilution Factor:                      | 10                         |                                         |     |
| PH:               |                          | Conc. Extract Volume:                 | 5000 (ul)                  |                                         |     |
| GPC Cleanup(Y/N): | N                        | Injection Volume:                     | <u>1 (ul)</u>              |                                         |     |
| Method:           | 8270ABN                  |                                       |                            |                                         |     |
| CAS NO            |                          | COMPOUND                              | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)                           | Q   |
| 51-28-5           | 2,4-Dinitrophenol        | · · · · · · · · · · · · · · · · · · · | 4000                       |                                         | UD  |
| 100-02-7          | 4-Nitrophenol            |                                       | 7000                       | ·                                       | QU  |
| 121-14-2          | 2,4-Dinitrotoluene       |                                       | 5500                       |                                         | UD  |
| 84-66-2           | Diethyiphthalate         |                                       | 5500                       |                                         | UD  |
| 86-73-7           | Fluorene                 |                                       | 4500                       | 28000                                   | D   |
| 7005-72-3         | 4-Chlorophenyl-phenyle   | ther                                  | 5500                       |                                         | UD  |
| 534-52-1          | 4,6-Dinitro-2-methylphe  | nol                                   | 3400                       |                                         | UD  |
| 88-30-6           | n-Nitrosodiphenylamine   |                                       | 6200                       |                                         | UD  |
| 101-55-3          | 4-Bromophenyl-phenyle    | ther                                  | 5600                       |                                         | UD  |
| 118-74-1          | Hexachiorobenzene        |                                       | 4000                       |                                         | UD  |
| 87-86-5           | Pentachiorophenol        |                                       | 5800                       |                                         |     |
| 85-01-08          | Phenanthrane             |                                       | 5500                       | 140000                                  | D   |
| 120-12-7          | Anthracene               |                                       | 5100                       | 73000                                   | D   |
| 84-74-2           | Di-n-butylphthalate      |                                       | 8500                       |                                         | UD. |
| 206-44-0          | Fluoranthene             |                                       | 0003                       | 160000                                  | Ð   |
| 92-87-5           | Benzidine                |                                       | 27000                      |                                         | UD  |
| 129-00-0          | Pyrene                   |                                       | 5400                       | 120000                                  | Þ   |
| 85-68-7           | Butylbenzylphthelate     |                                       | 6300                       |                                         | סט  |
| 56-55-3           | Benzo[a]anthracene       |                                       | 6600                       | 96000                                   | D   |
| 91-94-1           | 3,3'-Dichlorobenzidine   |                                       | 22000                      |                                         | ψb  |
| 218-01-9          | Chrysene                 |                                       | 5600                       |                                         | D   |
| 117-81-7          | bis(2-Ethylhexyl)phthala | ite                                   | 6100                       |                                         | UD  |
| 117-84-0          | Di-n-octylphthalate      |                                       | 6000                       | ┶━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ | UD  |
| 205-99-2          | Benzolojiluoranthene     |                                       | 5000                       |                                         | 0   |
| 207-08-9          | Benzo[k]fluoranthene     |                                       | 5800                       |                                         | D   |
| 50-32-8           | Benzo(a)pyrene           |                                       | 6000                       |                                         | D   |
| 193-39-5          | indeno[1,2,3-cd]pyrane   |                                       | 6200                       |                                         | D   |
| 53-70-3           | Dibenz[a,h]anthracene    |                                       | 6700                       |                                         | D   |
| 191-24-2          | Benzo[g,h,i]perylene     | ·                                     | 6600                       | 75000                                   | D   |

FORM1--SV

| SEMIVOLATILE ORGANIC: | ANALYSIS | DATA | SHEET |
|-----------------------|----------|------|-------|
|-----------------------|----------|------|-------|

|                                                                                                                                     | <u> </u>             | Customer Sample#:     | SP-3-                      | 1             |   |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|----------------------------|---------------|---|
| Lab Name:<br>EMSL Sample ID:                                                                                                        | EMSL Analytical Inc. | Project:              |                            |               |   |
| Lab File ID:                                                                                                                        | C10648.D             | Sample Matrix:        | Soils                      |               |   |
| Instrument ID:                                                                                                                      | MSD-C                | Sampling Date:        | 4/20/2006                  |               |   |
| Analyst:                                                                                                                            | WRF                  | Date Extracted:       | 4/24/2006                  |               |   |
| GC Column:                                                                                                                          | ZB-5MS (0.25 mm)     | Analysis Date         | 4/25/2006 12               | 2:06:00       |   |
| Level (low/med):                                                                                                                    | LOW                  | Sample wt/vol:        | 30.01 G<br>10              |               |   |
| % Moisture:                                                                                                                         | 34                   | Dilution Factor:      |                            |               |   |
| PH:                                                                                                                                 |                      | Conc. Extract Volume: | 5000 (ul)                  |               |   |
| GPC Cleanup(Y/N):                                                                                                                   | N                    | Injection Volume:     | 1 (u)                      |               |   |
| Method:                                                                                                                             | 8270ABN              |                       |                            |               |   |
| CAS NO                                                                                                                              |                      | COMPOUND              | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg) | Q |
| Qualifier Definitions<br>U = Undetected<br>B = Compound detected<br>E = Estimated value<br>J = Estimated concentrat<br>D = Dilution |                      |                       |                            |               |   |

#### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|     |                   |                           | Customer Sample#:                      | SP-4-2                     | -, <u></u> ,                           |           |
|-----|-------------------|---------------------------|----------------------------------------|----------------------------|----------------------------------------|-----------|
|     | Lab Name:         | EMSL Analytical Inc.      |                                        |                            |                                        |           |
|     | EMSL Sample ID:   | 010602145-0010            | Project:                               |                            |                                        |           |
|     | Lab File ID:      | C10646.D                  | Sample Matrix:                         |                            |                                        |           |
|     | Instrument ID:    | MSD-C                     | Sampling Date:                         | 4/20/2006                  |                                        |           |
|     | Analyst:          | WRF                       | Date Extracted:                        | 4/24/2006                  |                                        |           |
| (12 | GC Column:        | ZB-5MS (0.25 mm)          | Analysis Date                          | 4/25/2006 10               | 50:00                                  | `         |
|     | Level (low/med):  | LOW                       | Sample wt/vol:                         | 30.04 G                    | ······································ |           |
|     | % Moisture:       | 17                        | Dilution Factor:                       | 3                          |                                        |           |
|     | PH:               |                           | Conc. Extract Volume:                  | 1000 (ul)                  |                                        |           |
|     | GPC Cleanup(Y/N): | N                         | Injection Volume:                      | 1 (uí)                     |                                        |           |
|     | Method:           | 8270ABN                   |                                        | ,                          |                                        |           |
|     | CAS NO            |                           | COMPOUND                               | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)                          | ٩         |
|     | 62-75-9           | N-nitrosodimethylamine    |                                        | 120                        |                                        | UD        |
|     | 108-95-2          | Phenol                    |                                        | 220                        |                                        | au        |
|     | 100-51-8          | Benzyl alcohol            | ······                                 | 240                        |                                        | UD        |
|     | 111-44-4          | bis(2-Chloroethyl)ether   |                                        | 240                        |                                        | UD        |
|     | 95-67-8           | 2-Chlorophenol            |                                        | 180                        |                                        | UD        |
|     | 541-73-1          | 1.3-Dichlorobenzene       | Ut                                     | 170                        |                                        | <u>au</u> |
| _   | 108-46-7          | 1.4-Dichlorobenzene       | ·····                                  | 190                        | · · · · · · · · · · · · · · · · · · ·  | dU        |
|     | 95-50-1           | 1.2-Dichloroberizene      |                                        | 240                        |                                        | UD        |
| Ē   | 95-48-7           | 2-Methylphenol            |                                        | 220                        |                                        | νõ        |
|     | 108-60-1          | bis(2-chlorolsopropy))ath |                                        | 220                        | ├─── <u></u>                           | UD        |
|     | 106-44-5          | 3+4-Methylphenol          |                                        | 290                        |                                        | UD        |
|     | 621-84-7          | N-Nitroso-Di-n-propylami  |                                        | 270                        |                                        | UĎ        |
|     | 67-72-1           | Hexachloroethane          |                                        | 95                         | <u> </u> }-                            | UD        |
|     | 98-95-3           | Nitrobenzene              |                                        | 210                        | <u>├</u>                               | UD        |
|     | 78-59-1           | Isophorone                | ······································ | 200                        |                                        | UD        |
| _   |                   | <u> </u>                  |                                        | 250                        | ··                                     | UD        |
|     | 88-75-5           | 2-Nitrophenol             | ······                                 | 240                        | ┞────                                  |           |
|     | 105-67-9          | 2,4-Dimethylphenol        |                                        | 230                        | ·                                      |           |
|     | 111-91-1          | bis(2-Chloroethoxy)meth   | ans                                    |                            |                                        | UD        |
| -   | 120-83-2          | 2,4-Dichlorophenol        | 9_7/                                   | 230                        |                                        |           |
|     | 120-82-1          | 1,2,4-Trichlorobenzene    |                                        | 230                        |                                        |           |
|     | 91-20-3           | Naphthalene               |                                        | 270                        |                                        |           |
|     | 108-47-8          | 4-Chloroaniline           |                                        | 240                        |                                        |           |
|     | 87-68-3           | Hexachlorobutadiene       |                                        | 240                        |                                        |           |
|     | 59-60-7           | 4-Chloro-3-methylpheno    | <br>                                   |                            |                                        |           |
|     | 91-58-7           | 2-Chloronaphthalane       |                                        | 230                        | ╺┟╌╍╼╷┙┑╴╴┍╼╾╗╺╧╍╍╼┲╼╌┡╸               | <u></u>   |
|     | 77-47-4           | Hexachlorocyclopentadie   | ana                                    | 210                        |                                        |           |
|     | 88-06-2           | 2,4,5-Trichlorophenol     |                                        | 300                        |                                        |           |
|     | 95-95-4           | 2,4,5-Trichlorophenal     |                                        | 270                        |                                        |           |
|     | 131-11-3          | Dimethylphthalate         |                                        | 220                        |                                        |           |
|     | 208-96-8          | Acenaphthylene            |                                        | 210                        |                                        |           |
|     | 606-20-2          | 2,6-Dinitrotoluene        |                                        | 230                        | ·_+                                    | UD        |
|     | 83-32-9           | Acenaphthene              |                                        | 240                        |                                        | ÜD        |

Printed: 04/26/06 09:25:31 AM SampleList: 042506C ERM: C:\Program Files\EMSL\_ENV\_Pest\PP+NJDEP.erm

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                          | Customer Sample#:                      | SP-4-2                     |                                        |            |
|-------------------|--------------------------|----------------------------------------|----------------------------|----------------------------------------|------------|
| Lab Name:         | EMSL Analytical Inc.     |                                        |                            |                                        |            |
| EMSL Sample ID:   | 010602145-0010           | Project:                               |                            |                                        |            |
| Lab File (D:      | C10646.D                 | Sample Matrix:                         | Soils                      |                                        |            |
| Instrument 10:    | MSD-C                    | Sampling Date:                         | 4/20/2008                  |                                        |            |
| Analyst:          | WRF                      | WRF Date Extracted:                    |                            |                                        |            |
| GC Column:        | ZB-5MS (0.25 mm)         | Analysis Date                          | 4/25/2008 10               | 50:00                                  |            |
| Level (low/med):  | LOW                      | Sampis wt/vol:                         | 30.04 G                    |                                        |            |
| % Moisture:       | 17                       | Dilution Factor:                       | 3                          |                                        |            |
| PH:               |                          | Conc. Extract Volume:                  | 1000 (ul)                  | <u> </u>                               |            |
| GPC Cleanup(Y/N): | N                        | Injection Volume;                      | 1 (ul)                     |                                        |            |
| Method:           | -8270ABN                 |                                        |                            |                                        |            |
| CAS NO            |                          | COMPOUND                               | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)                          | Q          |
| 51-28-5           | 2,4-Dinitrophenol        | v                                      | 190                        |                                        | UD         |
| 100-02-7          | 4-Nitrophenol            |                                        | 330                        |                                        | UD         |
| 121-14-2          | 2,4-Dinitrotoluene       | <u> </u>                               | 260                        |                                        | UD         |
| 84-66-2           | Diethylphthalate         |                                        | 260                        | ·                                      | ŲØ         |
| 86-73-7           | Fluorene                 |                                        | 210                        |                                        | UD         |
| 7005-72-3         | 4-Chiorophenyl-phenyle   | ther                                   | 260                        | · ·                                    | <u>a</u> y |
| 534-52-1          | 4,6-Dinitro-2-methylphe  | · · · · · · · · · · · · · · · · · · ·  | 160                        |                                        | מט         |
| 86-30-6           | n-Nitrosodiphenylamine   | ······································ | 290                        |                                        | UD         |
| 101-55-3          | 4-Bromophenyl-phenyle    |                                        | 260                        | <u> </u>                               | UD         |
| 118-74-1          | Hexachiorobenzene        |                                        | 190                        |                                        | <u>UD</u>  |
| 87-86-5           | Pentachlorophenol        |                                        | 260                        | ├─── <u></u> ─── <del>│</del> ─        | ŲD         |
| 85-01-08          | Phananthrene             | ,                                      | 260                        | 230                                    | JD         |
| 120-12-7          | Anthracene               |                                        | 240                        |                                        | QŲ         |
| 84-74-2           | Di-n-butylphthalate      | · · · · · · · · · · · · · · · · · · ·  | 400                        | 210                                    | JBD        |
| 208-44-0          | Fluoranthene             |                                        | 330                        | 570                                    | p          |
| 92-87-5           | Benzidine                |                                        | 1300                       |                                        | đụ         |
| 129-00-0          | Pyrene                   |                                        | 260                        | 500                                    | D          |
| 85-68-7           | Butylbenzylphthaiate     |                                        | 300                        |                                        | UD         |
| 56-55-3           | Benzo[a]anthracene       | · · · · · · · · · · · · · · · · · · ·  | 320                        | 510                                    | õ          |
| 91-94-1           | 3,3'-Dichlorobenzidine   |                                        | 1000                       |                                        | UD         |
| 218-01-9          | Chrysene                 | ·· ··_ ··_ ·                           | 270                        | 470                                    | D          |
| 117-81-7          | bis(2-Ethylhexyl)phthala | ite                                    | 290                        |                                        | UD         |
| 117-84-0          | Di-n-octytphthalate      |                                        | 290                        |                                        | UD         |
| 205-99-2          | Benzo[b]fluoranthene     |                                        |                            | 570                                    |            |
| 207-08-9          | Benzo[k]fluoranthane     |                                        | 280                        | L                                      | JD         |
| 50-32-8           | Benzo[a]pyrene           |                                        | 290                        |                                        | D          |
|                   |                          |                                        | 300                        |                                        | JD         |
| 193-39-5          | Indeno[1,2,3-cd]pyrene   |                                        | 320                        | ······································ | UD         |
| 53-70-3           | Dibenz(a,h)anthracene    |                                        | 310                        |                                        | JD         |

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                                                                                                                                    | · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · | Customer Sample#:                                                                                                                                        | SP-4-2                                                                                       | 2 |  |                   |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|--|-------------------|
| Lab Name:<br>EMSL Sample ID:                                                                                                       | EMSL Analytical Inc.<br>010602145-0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project:                                                                                                                                                 |                                                                                              |   |  |                   |
| Lab File ID:<br>Instrument ID:<br>Analyst:<br>GC Column:<br>Level (lowimed):<br>% Molsture:<br>PH:<br>GPC Cleanup(Y/M):            | C10846.D<br>M\$D-C<br>WRF<br>ZB-5M\$ (0.25 mm)<br>LOW<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Matrix:<br>Sampling Date:<br>Date Extracted:<br>Analysis Date<br>Sample wt/vol:<br>Dilution Factor:<br>Conc. Extract Volume:<br>Injection Volume: | Soils<br>4/20/2006<br>4/24/2006<br>4/25/2006 10:50:00<br>30.04 G<br>3<br>1000 (ut)<br>1 (ut) |   |  |                   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                                                                              |   |  | Method:<br>CAS NO |
| Qualifier Definitions<br>U = Undetected<br>B = Compaund datacted<br>E = Estimated value<br>J = Estimated concentre<br>D = Dilution |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                                                                              |   |  |                   |

ſ

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                              |                             | Customer Sample#:     | SP-5-2                     | •                                     |          |  |
|------------------------------|-----------------------------|-----------------------|----------------------------|---------------------------------------|----------|--|
| Lab Name:                    | EMSL Analytical Inc.        | _                     |                            |                                       |          |  |
| EMSL Sample ID;              | 010602145-0012              | Project:              | . <u></u>                  |                                       |          |  |
| Lab File ID:                 | C10649.D                    | Sample Matrix:        | Soils                      |                                       |          |  |
| Instrument ID:               | MSD-C                       | Sampling Date:        | 4/20/2006                  |                                       |          |  |
| Analyst:                     | WRF                         | Date Extracted:       | 4/24/2006                  |                                       |          |  |
| GC Column:                   | ZB-5M\$ (0.25 mm)           | Analysis Date         | 4/25/2006 12               | :44:00                                |          |  |
| Level (low/med):             | LOW                         | Sample wt/vol:        | <u>30 G</u>                |                                       |          |  |
| % Moistura:                  | 21                          | Dilution Factor:      | 10                         |                                       |          |  |
| PH:                          |                             | Conc. Extract Volume: | 5000 (ul)<br>1 (ul)        |                                       |          |  |
| GPC Cleanup(Y/N):<br>Method: | N<br>8270ABN                | N Injection Volume:   |                            | **                                    |          |  |
|                              |                             |                       |                            | <u> </u>                              |          |  |
| CAS NO                       |                             | COMPOUND              | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)                         | Q        |  |
| 62-75-9                      | N-nitrosodimethylamine      | ₽                     | 2100                       |                                       | UD       |  |
| 108-95-2                     | Phenol                      | V                     | 3900                       |                                       | ับอี     |  |
| 100-51-6                     | Benzyi alcohol              |                       | 4300                       |                                       | ŲD       |  |
| 111-44-4                     | bis(2-Chloroethyl)ether     |                       | 4200                       |                                       | UD       |  |
| \$5-57-8                     | 2-Chlorophenol              | *                     | 3100                       |                                       | UD       |  |
| 541-73-1                     | 1.3-Dichloropenzene         |                       | 3000                       |                                       | 00       |  |
| 105-46-7                     | 1,4-Dichlorobenzene         |                       | 3300                       |                                       | υD       |  |
| 85-50-1                      | 1.2-Dichlorobenzene         |                       | 4200                       | · · · · · · · · · · · · · · · · · · · | UD       |  |
| 95-48-7                      | 2-Methylphenol              |                       | 3800                       |                                       | UD       |  |
| 108-60-1                     | bis(2-chloroisopropyi)ether |                       | 3900                       |                                       | ŪD.      |  |
| 106-44-5                     | 3+4-Methylphenol            |                       | 5100                       | · · · · · · · · · · · · · · · · · · · | UD       |  |
| 621-64-7                     | N-Nitroso-Di-n-propylamine  |                       | 4700                       | <u>├</u>                              | QU       |  |
| 87-72-1                      | Hexachiorgethane            |                       | 1700                       | <u> </u>                              | UD       |  |
| 98-95-3                      | Nitrobenzene                |                       | 3600                       |                                       | UD       |  |
| 78-59-1                      |                             | Isophorone            |                            | <u>;</u>                              | νD       |  |
| 88-75-5                      | 2-Nitrophenol               |                       | 4400                       |                                       | ÜD       |  |
| 105-67-9                     | 2,4-Dimethylphanol          |                       | 4200                       | └─────                                |          |  |
| 111-91-1                     | bis(2-Chloroethoxy)me       | thane                 | 4000                       |                                       | 00       |  |
| 120-83-2                     | (2,4-Dichlorophenol         |                       | 3600                       | <u></u>                               | UD       |  |
|                              | 1,2,4-Trichlorobenzene      |                       | 4100                       | <mark>┼────</mark> ────────           | UD       |  |
| 120-82-1                     |                             | <i></i>               | 3700                       | └─────                                |          |  |
| 81-20-3                      | Naphthalene                 |                       | 4700                       |                                       | UD       |  |
| 106-47-8                     | 4-Chloroaniline             |                       | 4300                       | <u> </u>                              |          |  |
| 87-88-3                      | Hexachlorobutadiene         |                       | 5000                       | <u></u>                               |          |  |
| 59-50-7                      | 4-Chloro-3-methylpher       |                       | 4100                       |                                       |          |  |
| 91-58-7                      | 2-Chloronaphthalene         | di                    | 3600                       |                                       |          |  |
| 77-47-4                      | Hexachiorocyclopenta        | <u></u>               | 5300                       | <u></u>                               |          |  |
| 88-06-2                      | 2.4.8-Trichlorophenol       |                       | 4700                       |                                       |          |  |
| 95-95-4                      | 2,4,5-Trichlorophenol       |                       |                            |                                       |          |  |
| 131-11-3                     | Dimethylphthelate           |                       | 3800                       |                                       |          |  |
| 208-96-8                     | Acenaphthylene              |                       | 3600                       |                                       |          |  |
| 606-20-2                     | 2,6-Dinitrotoluene          |                       | 4100                       | <u></u>                               |          |  |
| 83-32-9                      | Acenaphthene                |                       | 4200                       | 1                                     | <u> </u> |  |

Printed: 04/26/06 09:26:08 AM SampleList: 042506C ERM; C:\Program Files\EMSL\_ENV\_Pest\PP+NJDEP.erm FORM1--SV

1 of 3

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                            | Customer Sample#:     | SP-5-2                                                                  | •                |              |  |
|-------------------|----------------------------|-----------------------|-------------------------------------------------------------------------|------------------|--------------|--|
| Lab Nams:         | EMSL Analytical Inc.       |                       |                                                                         |                  |              |  |
| EMSL Sample ID:   | 010602145-0012             | Project:              |                                                                         |                  |              |  |
| Lab File ID:      | C10649.D                   | Sample Matrix:        | Solls                                                                   |                  |              |  |
| instrument ID:    | MSD-C                      | Sampling Date:        | 4/20/2006<br>4/24/2006<br>4/25/2006 12:44:00<br>30 G<br>10<br>5000 (ul) |                  |              |  |
| Analyst:          | WRF                        | Date Extracted:       |                                                                         |                  |              |  |
| GC Column:        | ZB-5MS (0.25 mm)           | Analysis Date         |                                                                         |                  |              |  |
| Level (lowfmed):  | LOW                        | Sample wt/vol:        |                                                                         |                  |              |  |
| % Moisture:       | 21                         | Dilution Factor:      |                                                                         |                  |              |  |
| PH:               |                            | Conc. Extract Volume: |                                                                         |                  |              |  |
| GPC Cleanup(Y/N): | N                          | Injection Volume:     | 1 (ul)                                                                  |                  |              |  |
| Method:           | 8270ABN                    |                       |                                                                         |                  |              |  |
| CAS NO            |                            | COMPOUND              | Report<br>Limit<br>(µg/Kg)                                              | CONC. (µg/Kg)    | Q            |  |
| 51-28-5           | 2,4-Dinitrophenol          |                       | 3400                                                                    |                  | ŪĎ           |  |
| 100-02-7          | 4-Nitrophenol              |                       | 5800                                                                    |                  | ay           |  |
| 121-14-2          | 2,4-Dinitrotoluene         |                       | 4600                                                                    |                  | UD           |  |
| 84-66-2           | Diethylphthalate           |                       | 4600                                                                    |                  | QU           |  |
| 86-73-7           | Fluorene                   |                       | 3700                                                                    |                  | UD           |  |
| 7005-72-3         | 4-Chlorophenyl-phenyle     | ither                 | 4600                                                                    |                  | QU           |  |
| 534-52-1          | 4.6-Dinitro-2-methylphanol |                       | 2800                                                                    |                  | UD           |  |
| 86-30-6           | n-Nitrosodiphenylamine     |                       | 5200                                                                    |                  | ŪŪ           |  |
| 101-55-3          | 4-Bromophenyl-phenylether  |                       | 4600                                                                    | <u> </u>         | - UD         |  |
| 118-74-1          | Mexachlorobanzana          |                       | 3300                                                                    | <u>├</u> ─────┤─ | UD           |  |
| 87-86-5           | Pentachiorophenol          |                       | 4800                                                                    | <u>├</u> · ·     | UD           |  |
| 85-01-08          | Phenanthrene               |                       | 4600                                                                    | 27000            | D            |  |
| 120-12-7          | Anthracene                 |                       | 4300                                                                    | 11000            | D            |  |
| 84-74-2           | Di-n-buty/phthalate        |                       | 7100                                                                    |                  | UD           |  |
|                   | Fluoranthene               |                       | 5700                                                                    |                  | 0            |  |
| 206-44-0          | Fluoranmene<br>Benzidine   |                       | 23000                                                                   |                  | UD           |  |
| 92-87-5           |                            |                       | 4500                                                                    |                  | Ď            |  |
|                   | Pyrane                     |                       | 5200                                                                    |                  | -<br>UD      |  |
| 85-68-7           | Butylbenzylphthalate       |                       | 5500                                                                    |                  | D            |  |
| 56-55-3           | Benzojajantitracene        |                       | 18000                                                                   |                  |              |  |
| 91-94-1           | 3,3-Dichlorobenzidine      |                       | 4700                                                                    | <u>↓</u>         | <del>.</del> |  |
| 218-01-9          |                            | Chrysene              |                                                                         | <b></b>          |              |  |
| 117-81-7          | bis(2-Ethylhexyl)phthali   |                       | 5100                                                                    |                  | - UD         |  |
| 117-84-0          | Di-n-octylphthalate        |                       |                                                                         |                  | <u></u>      |  |
| 205-99-2          | Benzo[b]fluoranthene       |                       | 4200                                                                    |                  | 0            |  |
| 207-08-9          | Benzo(k)fluoranthene       |                       | 4900                                                                    | <u></u>          | <u>0</u>     |  |
| 50-32-8           | Benzo[a]pyrene             |                       | 5000                                                                    |                  |              |  |
| 193-39-5          | indenc[1,2,3-cd]pyrene     |                       | 5200                                                                    | <u></u>          |              |  |
| 53-70-3           | Dibenz(a,h)an(hracene      |                       | 5600                                                                    |                  |              |  |
| 191-24-2          | Benzo[g,h,i]perylene       |                       | 5500                                                                    | 61000            | D            |  |

FORM1-SV

I.

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                                                                        |                                                                                                     | Customer Sample#:                                                                                                                                                    | SP-5-2                                                                                                                                 |  |          |                            |                     |   |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|----------|----------------------------|---------------------|---|--|
| Lab Name:<br>EMSL Sample ID:<br>Lab File ID:                           | EMSL Analytical Inc.<br>010602145-0012<br>C10649.D<br>MSD-C<br>WRF<br>ZB-5MS (0.25 mm)<br>LOW<br>21 | Project:<br>Sample Matrix:<br>Sampling Date:<br>Date Extracted:<br>Analysis Date<br>Sample wt/vol:<br>Dilution Factor:<br>Conc. Extract Volume:<br>Injection Volume: | Soils<br>4/20/2006<br>4/25/2006 12:44:00<br>30 G<br>10                                                                                 |  |          |                            |                     |   |  |
|                                                                        |                                                                                                     |                                                                                                                                                                      |                                                                                                                                        |  |          |                            | instrument ID:      |   |  |
| Analyst:                                                               |                                                                                                     |                                                                                                                                                                      |                                                                                                                                        |  |          |                            |                     |   |  |
| GC Column:                                                             |                                                                                                     |                                                                                                                                                                      |                                                                                                                                        |  |          |                            |                     |   |  |
| Level (low/med):<br>% Moisture:<br>PH:<br>GPC Cleanup(Y/N):<br>Method: |                                                                                                     |                                                                                                                                                                      |                                                                                                                                        |  |          |                            |                     |   |  |
|                                                                        |                                                                                                     |                                                                                                                                                                      |                                                                                                                                        |  |          |                            | 5000 (ul)<br>1 (ul) |   |  |
|                                                                        |                                                                                                     |                                                                                                                                                                      |                                                                                                                                        |  |          |                            |                     |   |  |
|                                                                        |                                                                                                     |                                                                                                                                                                      | CAS NO                                                                                                                                 |  | COMPOUND | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)       | Q |  |
|                                                                        |                                                                                                     |                                                                                                                                                                      | Qualifier Definitions<br>U = Undetected<br>B = Compound detected<br>E = Estimated value<br>J = Estimated concentration<br>D = Dilution |  |          |                            | · ·                 |   |  |

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                             | Customer Sample#:                     | SP-6-1                     |                                       |          |  |
|-------------------|-----------------------------|---------------------------------------|----------------------------|---------------------------------------|----------|--|
| Lab Name:         | EMSL Analytical Inc.        |                                       |                            |                                       |          |  |
| EMSL Sample ID:   | 010602145-0013              | Project:                              |                            |                                       |          |  |
| Leb File ID:      | C10653.D                    | Sample Matrix:                        | Soils                      |                                       |          |  |
| nstrument ID:     | MSD-C                       | Sampling Date:                        | 4/20/2006                  |                                       |          |  |
| Analyst:          | WRF                         | Date Extracted:                       | 4/24/2006                  |                                       |          |  |
| GC Column:        | ZB-5MS (0.25 mm)            | Analysis Date                         | 4/25/2006 15:              | 02:00                                 |          |  |
| Lavel (low/med):  | LOW                         | Sample wt/vol:                        |                            |                                       |          |  |
| % Moisture:       | 21                          | Dilution Factor:                      |                            |                                       |          |  |
| PH:               |                             | Conc. Extract Volume:                 |                            |                                       |          |  |
| GPC Cleanup(Y/N): | N                           | Injection Volume:                     | 1 (ul)                     |                                       |          |  |
| Method:           | 8270ABN                     |                                       |                            |                                       |          |  |
| CAS NO            |                             | COMPOUND                              | Report<br>Limit<br>(µg/Kg) | CONC. (µg/Kg)                         | Q        |  |
| 62-75-9           | N-nitrosodimethylamin       | ę                                     | 42                         |                                       | υ        |  |
| 108-95-2          | Phenol                      |                                       | 78                         |                                       | υ        |  |
| 100-51-6          | Benzyl alcohol              |                                       | 85                         |                                       | <u> </u> |  |
| 111-44-4          | bis(2-Chloroethyl)ether     |                                       | 84                         | · · · · · · · · · · · · · · · · · · · | U        |  |
| 95-57-B           | 2-Chlorophenol              |                                       | 63                         |                                       | U        |  |
| 541-73-1          | 1,3-Dichlombenzene          |                                       | 50                         |                                       | U        |  |
| 106-46-7          | 1,4-Dichlorobenzene         |                                       | 65                         |                                       | U        |  |
| 95-50-1           | 1,2-Dichlorobenzene         |                                       | 83                         | <u> </u>                              | U        |  |
| 95-48-7           | 2-Mathylphenol              |                                       | 78                         |                                       | U        |  |
| 108-60-1          | bls(2-chloroisopropyl)ether |                                       | 17                         | ┞┞                                    | <u> </u> |  |
| 108-44-5          | 3+4-Methylphanol            |                                       | 100                        | · · · ·                               |          |  |
| 621-64-7          | N-Nitroso-Di-n-propyla      | mine                                  | 94                         | { - <u></u>                           | <u> </u> |  |
| 67-72-1           | Hexachloroethane            |                                       | 33                         |                                       | U        |  |
| 98-95-3           | Nitrobenzana                |                                       | 72                         |                                       | <u> </u> |  |
| 78-59-1           | Isophorone                  |                                       | 70                         |                                       | U        |  |
| 88-75-5           | 2-Nitrophenol               |                                       | 88                         |                                       | U        |  |
| 105-67-9          | 2.4-Dimethylphenol          |                                       | 84                         |                                       | U        |  |
| 111-91-1          | bis(2-Chloroethoxy)me       | sthane                                | 80                         |                                       | Ų        |  |
| 120-83-2          | 2,4-Dichlorophenol          |                                       | 72                         | i                                     | U        |  |
| 120-82-1          | 1,2,4-Trichlorobenzen       |                                       | 81                         | 1                                     | Ű        |  |
| 91-20-3           | Naphthalene                 | · · · · · · · · · · · · · · · · · · · | 73                         | 1                                     | U        |  |
| 106-47-8          | 4-Chloroaniline             |                                       | 94                         |                                       | U        |  |
| 87-68-3           | Hexachlorobutadiene         |                                       | 85                         |                                       | ų        |  |
| 59-50-7           | 4-Chloro-3-methylphe        |                                       | 100                        |                                       | Û        |  |
| 91-58-7           | 2-Chioronaphthalene         | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                   | 82                         |                                       | บ        |  |
| 77-47-4           | Hexachiorocyclopenta        | Idlene                                | 73                         |                                       | U        |  |
| 88-06-2           | 2,4,6-Trichlorophenol       |                                       | 110                        |                                       | U        |  |
| 95-95-4           | 2,4,5-Trichlorophenol       |                                       | 94                         |                                       | Ų        |  |
| 131-11-3          | Dimethylonthalate           |                                       | 76                         | / ~/ "                                |          |  |
| 208-96-8          | Acenaphthylene              |                                       | T:                         |                                       | <u> </u> |  |
| 606-20-2          | 2,6-Dinitrotoluene          |                                       | 8                          |                                       |          |  |
| 83-32-9           | Acenaphthene                |                                       | 8                          | 4 )                                   | - V      |  |

Printed: 04/26/06 09:26:19 AM SampleList: 042506C ERM: C:\Program Files\EMSL\_ENV\_Pest\PP+NJDEP.erm 1 of 3

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|                   |                            | Customer Sample#:                          | SP-6-1                                     |               |          |  |
|-------------------|----------------------------|--------------------------------------------|--------------------------------------------|---------------|----------|--|
| Lab Name:         | EMSL Analytical Inc.       | <u> </u>                                   |                                            |               |          |  |
| EMSL Sample (D:   | 010602145-0013             | Project:                                   |                                            |               |          |  |
| Lab File ID:      | C10653.D                   | Sample Matrix:                             | Soils                                      |               |          |  |
| instrument ID:    | MSD-C                      | Sampling Date:                             | 4/20/2006                                  |               |          |  |
| Analyst:          | WRF                        | Date Extracted:                            | 4/24/2008<br>4/25/2006 15:02:00<br>30.01 G |               |          |  |
| GC Column:        | ZB-5MS (0.25 mm)           | Analysis Date                              |                                            |               |          |  |
| Level (lowimed):  | LOW                        | Sample wt/vol:                             |                                            |               |          |  |
| % Moisture:       | 21                         | Dilution Factor:                           | 1<br>1000 (ul)                             | ·             | <u></u>  |  |
| PH:               | N                          | Cone. Extract Volume:<br>Injection Volume: | 1 (ul)                                     |               |          |  |
| GPC Cleanup(Y/N): | 8270ABN                    | macdon volume.                             | <u></u>                                    |               |          |  |
| Method:           | 8270ASN                    |                                            |                                            |               |          |  |
| CAS NO            |                            | COMPOUND                                   | Report<br>Limit<br>(µg/Kg)                 | CONC. (µg/Kg) | Q        |  |
| 51-28-5           | 2.4-Dinitrophenol          |                                            | 67                                         |               | U        |  |
| 100-02-7          | 4-Nitrophenal              |                                            | 120                                        |               | U        |  |
| 121-14-2          | 2,4-Dinitrotoluene         |                                            | 92                                         |               | U        |  |
| 84-66-2           | Diethylphthalate           |                                            | 92                                         |               | U        |  |
| 86-73-7           | Fluorene                   |                                            | 75                                         |               | U        |  |
| 7005-72-3         | 4-Chlorophenyl-phenylether |                                            | 91                                         |               | U        |  |
| 534-52-1          | 4,6-Dinitro-2-methylphenol |                                            | 57                                         |               | U        |  |
| 86-30-6           | n-Nitresodiphenylamine     |                                            | 100                                        |               | U        |  |
| 101-55-3          | 4-Bromophenyl-phenylether  |                                            |                                            | <u>}</u> +    | . U      |  |
| 118-74-1          | Hexachlorobenzene          |                                            | 67                                         | <u>├</u>      | U        |  |
| 87-86-5           | Pentachiorophenol          |                                            |                                            | <u> </u>      | Ū        |  |
| 85-01-08          | Phenanthrene               |                                            |                                            | <u> </u>      |          |  |
|                   | Anthracone                 |                                            |                                            | <u> </u>      | U        |  |
| 120-12-7          |                            |                                            | 140                                        |               | JB       |  |
| 84-74-2           | Di-n-butylphthalate        |                                            | 110                                        |               | U        |  |
| 206-44-0          | Benzidine                  |                                            |                                            |               | U        |  |
| 92-87-5           |                            | _ <u></u>                                  |                                            | <u></u>       | U        |  |
| 129-00-0          | Pyrene                     | ······································     |                                            | <u></u>       |          |  |
| 85-68-7           | Butylbenzylphthalate       |                                            |                                            |               |          |  |
| 56-55-3           | Benzo(a)anthracana         |                                            |                                            | <u> </u>      | บ        |  |
| 91-94-1           | 3,3'-Dichlorobenzidine     | ·                                          |                                            |               | ū-       |  |
| 218-01-9          | Chrysene                   |                                            |                                            |               | <u> </u> |  |
| 117-81-7          | bis(2-Ethylhexyl)phtha     | late                                       | 100                                        | ┶┷╍╼╼╼╼┾      |          |  |
| 117-84-0          | Di-n-octylphthalate        |                                            | 100                                        |               |          |  |
| 205-99-2          | Benzo(b)fluoranthene       |                                            | BA                                         | <u></u>       | <u> </u> |  |
| 207-08-9          | Benzo[k]fluoranthene       |                                            | 97                                         |               | <u> </u> |  |
| 50-32-8           | Benzo(a)pyrena             |                                            | 100                                        |               | U        |  |
| 193-39-5          | Indena(1,2,3-cd]pyren      | ē                                          | 100                                        | 7             | U        |  |
| 53-70-3           | Diberz(a,h)anthracene      |                                            | 110                                        |               | <u> </u> |  |
| 191-24-2          | Benzo[g,h,i]perviene       |                                            |                                            |               | <u> </u> |  |

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| <u> </u>                                                                                                                           |                                                           | Customer Sample#:                                                                                                                                        | SP-6-1                          |  |               |         |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|---------------|---------|
| Lab Name:<br>EMSL Sample ID:                                                                                                       | EMSL Analytical Inc.<br>010602145-0013                    | Project:                                                                                                                                                 | Soils<br>4/20/2006<br>4/24/2006 |  |               |         |
| ab File ID:                                                                                                                        | C10653.D<br>MSD-C<br>WRF<br>ZB-5MS (0.25 mm)<br>LOW<br>21 | Sample Matrix:<br>Sampling Date:<br>Date Extracted:<br>Analysis Date<br>Sample wt/vol:<br>Dilution Factor:<br>Conc. Extract Volume:<br>Injection Volume: |                                 |  |               |         |
| Instrument ID:                                                                                                                     |                                                           |                                                                                                                                                          |                                 |  |               |         |
| Analyst:                                                                                                                           |                                                           |                                                                                                                                                          |                                 |  |               |         |
| GC Column:                                                                                                                         |                                                           |                                                                                                                                                          | 4/25/2006 15:02:00<br>30.01 G   |  |               |         |
| Level (low/med):                                                                                                                   |                                                           |                                                                                                                                                          |                                 |  |               |         |
| % Moisture:                                                                                                                        |                                                           |                                                                                                                                                          | 1                               |  |               |         |
| PH:<br>GPC Cleanup(Y/N):<br>Method:                                                                                                |                                                           |                                                                                                                                                          | 1000 (ul)<br>1 (ul)             |  |               |         |
|                                                                                                                                    |                                                           |                                                                                                                                                          |                                 |  |               | 8270ABN |
|                                                                                                                                    | CAS NO                                                    |                                                                                                                                                          | COMPOUND                        |  | CONC. (µg/Kg) | ٩       |
| Qualifier Definitions<br>U = Undetected<br>B = Compound detected<br>E = Estimated value<br>J = Estimated concentra<br>D = Dilution |                                                           |                                                                                                                                                          |                                 |  |               |         |

FORM1-SV

T

|                                                                                             |                             |                         |                                           |                               |                                                                                             |                                                                   |                                        |                        | シニン       |
|---------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|------------------------|-----------|
| EMSL Analytical, Inc.                                                                       | Inc.                        | Chain of                | f Custody / Analysis Request Form         | Analysis                      | Request F                                                                                   |                                                                   | EMSL Project #<br>Account Rep:         |                        |           |
| C.nembity Lan<br>3 Cooper Si, Westmont, NJ 08108<br>TEL: (856) 858–4800 FAX: (856) 858–4571 | 7 08108<br>: (836) 858-4571 | Print ALL<br>applicable | L Information. Put N/A in blanks not<br>e | Put N/A                       | ín blanks n                                                                                 |                                                                   | Indicate State where sumples collected | re samples coll        | ected:    |
| <b>REPORT RESULTS TO:</b>                                                                   | TS TO:                      | SEND IN                 | VOICE TO:                                 |                               | 2000                                                                                        | MERINANONANIE                                                     |                                        |                        |           |
| Name: HARRY                                                                                 | HARRY KAYNGR                | Name:                   |                                           | PO#: /4                       | 4-734+                                                                                      | Date Kesults needed by:                                           |                                        | 1110 0111              |           |
| Company:<br>PyBURN & OOOM                                                                   | 4000m M2A                   | Сопрану                 |                                           |                               |                                                                                             | *Standard 6-30 days or 2 weeks<br>*16-21 days or 4 weeks          | ] L                                    | Show C To anys of L-1. | WCCKG     |
| Address 0179 6                                                                              | SOI AVE                     | Address                 |                                           | Ц                             |                                                                                             | The following turnaround times require lab approval:              | rround times req                       | puire lab appro        | val:      |
| City Garni, Roube                                                                           | Roube                       | City                    |                                           |                               |                                                                                             | 10-4-5 days or 1 week                                             | eek 🔲 72 Hrs                           | 48 Hrs                 | 51        |
|                                                                                             | ZIP                         | ┝╼┤                     |                                           | ZIP                           |                                                                                             | 24 Hrs AI                                                         | Approved by                            |                        |           |
| TEL: 225-7666339 #AX:                                                                       | 0871-1912-922 :XVA 011      | S'D TEL:                | FA                                        | FAX:                          |                                                                                             | *same price and tat for weeks or days<br>Date of Semule Shimment: | t for weeks or days                    | 1010                   |           |
| Sampled by: (Signature)                                                                     | tang for                    | # of Sample             | # of Samples in Shipment:                 | 2                             |                                                                                             |                                                                   |                                        |                        |           |
|                                                                                             |                             |                         | MATRIX                                    | Method                        | Method Preserved                                                                            |                                                                   | List                                   | List Test Needed       |           |
|                                                                                             |                             |                         | N N N N N N N N N N N N N N N N N N N     | H Z O .<br>H C J I<br>O H H I | ш<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц |                                                                   | ď                                      | 5301.1<br>(\           |           |
| Sample<br>Number                                                                            | Station Location /Sample C  | COMP GRAB               |                                           |                               |                                                                                             |                                                                   | 771                                    | 101<br>N 3 4           |           |
| 1. 5Pul-1                                                                                   | Bring #1                    | 7                       | 7                                         |                               |                                                                                             | 460 10:53                                                         | 7                                      |                        |           |
| N                                                                                           |                             | 7                       | 1                                         |                               |                                                                                             | 4/20 10:55                                                        |                                        | 7                      |           |
|                                                                                             | BORING #1                   | 7                       | L<br>L                                    |                               |                                                                                             | 4 20 10:53                                                        | 7                                      |                        | -         |
|                                                                                             | BUTIN # 1                   | 7                       | 7                                         |                               |                                                                                             | And 10:55                                                         |                                        | 7                      |           |
| -                                                                                           | Boring #2                   | 7                       | 7                                         |                               |                                                                                             | the visit                                                         | 7                                      |                        |           |
| è                                                                                           | Berng # 2                   | 7                       | 7                                         |                               |                                                                                             | 470 10:15                                                         |                                        | 7                      |           |
| 617.50-3-1                                                                                  |                             | 7                       | 7                                         |                               |                                                                                             | HWERK                                                             |                                        | 7                      | NT.       |
| 8.50-3-2                                                                                    | Boning #3                   | 7                       | 7                                         |                               |                                                                                             | Hrd 10:24                                                         | 7                                      |                        |           |
| 9. 58-4-1                                                                                   | Boring #4                   | 1                       | 7                                         |                               |                                                                                             | 8ca1 2H                                                           | 7                                      |                        | ).        |
| 10 58-4-2                                                                                   | BUC # # 4                   | }                       | 7                                         |                               |                                                                                             | 4/20/00:38                                                        |                                        | 7                      | 2         |
|                                                                                             |                             | Delivery Method         | Received By                               |                               | Agency                                                                                      | Date & Time Received                                              | ed Condition Nated                     | -<br>Pa                |           |
| Hangland                                                                                    | Wp. 8. 70/                  | Fideyp                  | Kus Un                                    | 3                             | ENSC                                                                                        | 4/31/06 09%                                                       | 66                                     | = to in pre            | 57        |
| ~ ~                                                                                         |                             |                         |                                           |                               |                                                                                             |                                                                   |                                        |                        |           |
|                                                                                             |                             |                         | II PICKY INTERED TO BE                    | <b>STREET</b> CONTRA          |                                                                                             |                                                                   | NE ONCH THE HEAD OF                    | d Deligeraties. 🖸      | A DIGREES |

ł

ļ

i

~····

--- -- -

ſ

ļ

I

<u>na series a series de la series</u>

| March Warmen, Name     Print ALL Information. Put NA in blands not     Constance     Constance       Statum, Name     Statum, Name     Statum, Name     Statum, Name     Statum, Name       Statum, Name     Statum, Name     Statum, Name     Statum, Name     Statum, Name       Statum, Name     Statum, Name     Statum, Name     Statum, Name     Statum, Name       Statum, Name     Statum, Name     Statum, Name     Statum, Name     Statum, Name       Statum, Name     Constant     Statum, Name     Statum, Name     Statum, Name       Statum, Statum, Name     Constant     Statum, Name     Statum, Name     Statum, Name       Statum, Statum, Statum, Name     Address     Address     Address     Address       Statum, Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EMSLA                                 | EMSL Analytical, Inc.                                          | Chain of          | f Custody / Analysis Request Form                                                            | ualysis Re            | quest ]  | Torm                      | EMS                | EMSL Project # | õ                  | 2110000      | Ju4 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|-----------------------|----------|---------------------------|--------------------|----------------|--------------------|--------------|-----|
| REPORT RESULTS TO:     SEPON       Name:     HAPPY     Company:       Company:     Name:       Company:     Company       Company     Company       Address     State       State     Aviet       State     Aviet       State     Aviet       State     Aviet       State     Company       State     Aviet       State     Aviet       State     Company       State     Aviet       State     State       State     State       State     State       State     Coverse       State     State       State     State       State     Coverse       State     State <td< td=""><td>Chemistr<br/>3 Cooper St<br/>FEL: (356)</td><td>7 Lab<br/>, YY±4tmonl, NJ 08108<br/>858-4800 YAX: (836) 838-4571</td><td>Print ALI</td><td>. Information. P</td><td>ut N/A in )</td><td>blanks n</td><td>ot</td><td>Indica</td><td>te State whe</td><td>re sample</td><td>s collected:</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemistr<br>3 Cooper St<br>FEL: (356) | 7 Lab<br>, YY±4tmonl, NJ 08108<br>858-4800 YAX: (836) 838-4571 | Print ALI         | . Information. P                                                                             | ut N/A in )           | blanks n | ot                        | Indica             | te State whe   | re sample          | s collected: |     |
| KURYUKI KUSULIJO I.U.:<br>Name: HAEPY KITYUPE. Name: Company<br>Company:<br>Company:<br>Address & 178 GER1 AVE CONP<br>State Lavisi Arra ZIP 7482 TEL:<br>Sampled by Signature)<br>1. 5P-5-1 Boring #5 U<br>1. 5P-5-1 Boring #5 U<br>3. 5P-6-1 Boring #5 U<br>1. 9P-5-1 Boring #5 U<br>1. 5P-5-2 Boring #5 U<br>1. 1. 5P-5-2 Boring # 5 U<br>1. 1. 5P-5-2 Boring # 5 U<br>1. 1. 5P-5-1 Boring # 5 U<br>1. 1. 5P-6-1 Boring # 5 U<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                                | SPND IN           | VOICE TO:                                                                                    |                       |          |                           | <b>VOID</b> NUMBER |                |                    |              |     |
| Address     Element     Address       Address     El 7 & Gen L     Ave       Address     El 7 & Gen L     Ave       Address     El 7 & Gen L     Ave       State     Avisi Arra     ZIP 7 & Gen L       Sampled by Signatures     Matress     # of Sample       1     5     Eric     Berring # 5       2     5     Berring # 5     Control # 5       3     5 F-6-1     Berring # 5     Control # 5       4     5     Berring # 5     Control # 5       5     8     Berring # 6     Control # 5       6     9     Derring # 6     Control # 5       10     10     Aldress     Derring # 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KEPOK                                 | I KESULIS IU:                                                  | Name.             |                                                                                              | 11                    | Ī        | Date Resul                | ts needed by       | 412            | R 10G              |              |     |
| Address     R (78, Gr, PL, MVC     Address       Address     8 (78, Gr, PL, MVC     210 79, R 20       City     DAVENAR     20 C, City       City     DAVENAR     20 C, City       City     DAVENAR     210 79, R 20       Sampled by Signatures     311 71, R 20       Sampled by Signatures     314 71, R 20       Sample     Sample       Sample     Sample </td <td>Company</td> <td>THEFT ATTACK</td> <td>Company</td> <td></td> <td></td> <td></td> <td>*Standard (<br/>*16-21 day</td> <td>s or 4 weeks</td> <td></td> <td>11-15 days</td> <td>i or 3 weeks</td> <td>٦  </td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Company                               | THEFT ATTACK                                                   | Company           |                                                                                              |                       |          | *Standard (<br>*16-21 day | s or 4 weeks       |                | 11-15 days         | i or 3 weeks | ٦   |
| Address & 178 GFR1 AVE<br>City Ext. 2017 2017 20 State<br>State av. 128 CPAR, 225 - 749 7980 TEL:<br>Sample by Signature)<br>Manualet<br>Sample Sample Station Lacation / Sample COMP GRAB<br>Number<br>1. 5P-5-1 Boring # 5 U<br>3. 5P-6-1 Boring # 5 U<br>8. 8. 100 AST AVE COMP GRAB<br>100 100 AST AVE AVE COMP GRAB<br>100 100 AST AVE COMP GRAB<br>100 100 AST AVE COMP GRAB<br>100 100 AST AVE AVE AVE COMP GRAB<br>100 100 AST AVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | YBURN & CRUMN MICH                                             | Address           | * AVIA                                                                                       |                       |          |                           |                    |                |                    |              |     |
| City EATEN Role & City EATEN Role & City EATEN Role & City State S                                                                                                                                                               | Address                               | RITS GERI AVE                                                  | ess mmu           | LAN .                                                                                        |                       |          | The follow                | ing curoarou       | und times ret  | quire lab 2        | pproval:     | T   |
| State Lovies Arrea IIP 76 20 State<br>TEL: TL. TL. Arrea IIP 762 State<br>Sampled by Signatures And the Stamples<br>Sample Sample Stample CoMP CRAB<br>Number II. 5P-5-1 Coring W-5 U<br>3. 5P-6-1 Coring W-5 U<br>4. 5P-5-2 Boring # 6 U<br>4. 5P-5-2 Boring # 6 U<br>3. 5P-6-1 Soring # 5 U<br>6. 6. 6. 6. 0<br>1. 5P-5-3 Boring # 5 U<br>3. 5P-6-1 Boring # 5 U<br>4. 1. 5P-5-3 Boring # 6 U<br>4. 1. 5P-5-3 Boring # 5 U<br>3. 5P-6-1 Boring # 5 U<br>4. 1. 5P-5-3 Boring # 5 U<br>3. 5P-6-1 Boring # 5 U<br>4. 1. 5P-5-3 Boring # 5 U<br>4. 1. 5P-5-3 Boring # 5 U<br>4. 1. 5P-5-3 Boring # 5 U<br>5. 5P-5-3 Boring # 5 U<br>5. 5P-5-5 Boring # 5 D<br>5. | City                                  | RODEE                                                          |                   |                                                                                              |                       |          |                           | ya or Iweek        | קכ             | ~                  | 90 F1F2      |     |
| TEL: TIC TIC TIC ROTAX: DE TUR TRAD.     # of Samples       Sampled byf, Signature)     # of Samples       Sampled byf, Signature)     # of Samples       Samples     Samples       Samples     Sample       Samples     Samples       Samples     Samples   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                     | Z.IP 7                                                         |                   | - A 144                                                                                      |                       |          | teame nric                | e and tat for      | 12             | . 870              |              | T   |
| Harton     Horizon       Sample     Sample       I.     SP-5-1       Sp-5-1     Sorrong # 6       4     Sorrong # 6       5     Sorrong # 6       6     Sorrong # 6       7     Sorrong # 6       7     Sorrong # 6       9     Sorrong # 6       9     Sorrong # 6       10     Manual       10     Manual       Manual     Sorrong # 750 Kinpol       Manual     Sorrong # 750 Kinpol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEL: 22<br>Samuler                    | Nov & BOFAX: 255                                               | 161:              |                                                                                              | 1-                    |          | Date of Sa.               | aple Shipm         | A              | Ø                  |              |     |
| Sample<br>Sample<br>Number In<br>1. 5P-5-1 Coring #5 U<br>3. 5P-6-1 Coring #5 U<br>4.<br>5.<br>6.<br>6.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>8.<br>8.<br>8.<br>8.<br>8.<br>9.<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>11<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | acon lon w                                                     | 0.1222            | es in Shipment:<br>MATRUX                                                                    | Method Pre            | escrved  |                           |                    | List           | Test Needer        |              |     |
| Sample<br>Sample<br>Number In<br>1. 5P-5-1 Boring #5 U<br>3. 5P-6-1 Boring #5 U<br>4. 5. 800000 #5 U<br>5. 6. 130000 #5 U<br>7. 5P-6-1 Boring #6 U<br>8. 8. 9. 10000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                |                   |                                                                                              |                       |          |                           |                    |                |                    |              | T   |
| 1.     5P-5-1     Corring #5     U       2.     5P-6-1     Boring #5     U       3.     5P-6-1     Boring #6     U       5.     5     0     10       6.     6.     10     10       10     10     10     10       10     10     10     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Salt<br>Num                           |                                                                |                   | 8 J D A 9 H<br>4 J A<br>4 J A<br>8 J A<br>1 A<br>1 A<br>1 A<br>1 A<br>1 A<br>1 A<br>1 A<br>1 | 202                   |          | o⊢⊒⊌⊄                     |                    | 0171           | 714471/1<br>-14139 |              |     |
| SP-6-1 Boring #5 U<br>SP-6-1 Boring #6 U<br>Delivery Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -+-                                   | III<br>Rouge H                                                 | 17                |                                                                                              |                       |          | 1-F                       | 1. **              | 7              |                    |              |     |
| SP-6-1 Boring & C U<br>SP-6-1 Boring & C U<br>Delivery Method<br>Hey Very Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                     |                                                                | 7                 |                                                                                              |                       |          |                           | 14:01              |                | 7                  |              |     |
| Hey Layon Aradon 3: 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Boring                                                         | 7                 | 7                                                                                            |                       |          |                           | 12:50              |                | Ż                  |              |     |
| ter James Aradol 3: 20 A. FED Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                |                   |                                                                                              |                       |          |                           |                    |                |                    |              |     |
| En Arabe 3: 20 FEP Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vi                                    |                                                                |                   |                                                                                              |                       |          |                           |                    |                |                    | 210          |     |
| ter fee sing fee Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                     |                                                                |                   |                                                                                              |                       |          |                           |                    |                |                    |              | WE  |
| ter free the second between the free free free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.                                    |                                                                |                   |                                                                                              |                       | -        |                           |                    |                |                    |              |     |
| ter Jay Araba 3:00 FED Eup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90                                    |                                                                |                   |                                                                                              |                       |          |                           |                    |                |                    | 146          | MS  |
| ter from Arabe 3:00, TED Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.                                    |                                                                |                   |                                                                                              |                       |          |                           |                    |                |                    |              |     |
| legtaper Arabe 3: 20 Feb Fep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                    |                                                                |                   |                                                                                              |                       |          |                           |                    |                |                    |              |     |
| ter fayor Arabe 3: man teo tup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                | E Delivery Method | -                                                                                            | Age                   | aty .    | Date & T                  | ime Received       | Condition No.  | fed                | 29           |     |
| Les all the coole It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                | 4e0               | $\mathbf{\nu}$                                                                               | R                     | PM.SL    | heth                      | 8                  | 7              | 50                 | ريم          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Van II.                                                        |                   |                                                                                              |                       |          |                           |                    |                | à                  | cles         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                |                   |                                                                                              | 122 Ed. 2222 (014 22) |          | 100 CARES ST              |                    | Yea Bustanii   | an balland         | DOBY B BED   |     |

ļ

ł

j.

- ·

: }

ł

÷ I

I.

i

.

\_

I.

| Crisp Analytical Labor<br>2081 Hutton Dr.,<br>Carrollton, TX<br>PH: (972) 48<br>Fax: (972) 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Suite 301 1<br>75006<br>8-1414<br>8-8006                                                                                                                                                                                                                                 | <b>CA Labs, L.L.</b><br>2232 Industriplex, S<br>Baton Rouge, LA 7<br>PH: (225) 751-5<br>Fax: (225) 751-5                                                                                                                                 | iuite 32 5829 W<br>0809<br>632<br>634                                                                                                                                                                                        | est Sam Houston  <br>Houston,<br>PH: (713)                                                                                                 |                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Polar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | zed Light M                                                                                                                                                                                                                                                              | icroscopy                                                                                                                                                                                                                                | Report                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                      |
| Analysia Method: Interim (40CPR Part 76) Appendix E to Subpart E)<br>Proparation Method: MCL seid analylog for earbornate based samples,<br>intentification of astresson types by dispersion atto<br>Client Informations:<br>PyBurn & Odom, Inc.<br>8178 GSRI Avenue<br>Baton Rouge, LA 70820<br>Phone: 225-766-6330<br>Fax: 225-769-7680                                                                                                                                                                                                                                                                               | chemical reduction for organically<br>ining / becks late method.<br>Turnarouthd<br>Atta: Han                                                                                                                                                                             | Client Project:<br>14-754<br>I Time: 3 day<br>ry A. Rayner                                                                                                                                                                               | CA Labs<br>Date: 04<br>Samples J<br>Purchase                                                                                                                                                                                 | Received: 04/24<br>Order #:                                                                                                                | /06 .                                                                                                                                |
| Sampic# Layer # Analysta Physical Desc<br>of Subsample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | geneous visual<br>(Y/N) (none                                                                                                                                                                                                                                            | tos type / calibrated<br>estimate percent<br>detected = absent /<br>d visual% - present)                                                                                                                                                 | Nun-asbestus fiber type                                                                                                                                                                                                      | Percent rom-                                                                                                                               | fibrous type / percent                                                                                                               |
| 04200601 1 white transite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y 2                                                                                                                                                                                                                                                                      | 5% Chrysotile                                                                                                                                                                                                                            |                                                                                                                                                                                                                              |                                                                                                                                            | 75% other                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                            |                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                            |                                                                                                                                      |
| : Jenow lala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                          | 200452-0<br>LAP # 03069<br>-0256                                                                                                                                                                                                         | Аррточи                                                                                                                                                                                                                      | od Signatorica:                                                                                                                            |                                                                                                                                      |
| Terrance Leiblanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Page 1 o                                                                                                                                                                                                                                                                 | đ 1                                                                                                                                                                                                                                      | Arthur Hernar<br>General Mans                                                                                                                                                                                                |                                                                                                                                            | ody Newton<br>unitary Director                                                                                                       |
| Analyst<br>Notes:<br>Some samples (loce tilm, aurfacing, etc.) ney contain fibers too small<br>visual estimates traceable to NIST samplareds for regulated asbestou typ<br>by the National Voluntary Laboustory Accreditation Program (NVLA)<br>tested. CA lab participates in the AlfhA EMPAT profilemery program<br>This report may not be reproduced except in fail without written permit<br>Those remote a submitted pursuant to CA Laby' current terms and on<br>the manner in which the remote are used or interpreted. Unless notifies<br>stopping and handling flow may be succeed for the reism of any sample | too be detectable by PLM. TEM (<br>pr. Analysts' percentages fall while<br>) for subscied rear methods for built.<br>This test reports relates thily to it<br>asion from CA Labz.<br>negition of salo, including the comp<br>and its writing to return the samples<br>a. | anticipid analysis of Poulls mati-<br>as a range of acceptable perce-<br>le asherines fiber analysis (PI)<br>he items tested. Nother NVI<br>anny's standard warranty and<br>anny's standard warranty and<br>covered by this teport, CA I | rial is recommended in this case<br>mages, depending on the setural of<br>[M] and althorne fiber analysis (I<br>.AP nor EPA accreditation implie<br>limitation of fishility provisions<br>aby will store the samples for a p | All asbestos percentagos<br>encontration of atheston.<br>IIIA). This test report it<br>is endorsement by any U<br>and no reconscibility or | aro besod on culibrition<br>CA Lubs is accredited<br>dates unly to the theme<br>IS Governments syntaxy.<br>Kabila v is measurated BM |
| Analysts performed at C.A. Laba, Inc. 12232 Industripler, Southe 32, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aton Rouge, LA 70803; phone (22                                                                                                                                                                                                                                          | 5) 751-5632, Ex (225)751-9                                                                                                                                                                                                               | 934, mohile (223)806-7031.                                                                                                                                                                                                   |                                                                                                                                            | •<br>•                                                                                                                               |

| 04-27-2006 12:40                                       | CALABS 22                                      | 257515634        |                                       | PAGE: 2                                                                                                              |
|--------------------------------------------------------|------------------------------------------------|------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                                        | Aspestos Content                               |                  | Purpose                               | aper<br>aper                                                                                                         |
| ABORATORY DATA                                         | Analylical<br>Mediod                           |                  |                                       | mpter: booking                                                                                                       |
| PAGE                                                   | MATERIAL                                       |                  | Method of Transfer                    | Sampler: by<br>Signature: 3. X-Ray Diffraction<br>4. Transmission Elect                                              |
| RECORD                                                 | Matcrial Description                           |                  | SAMPLE CHAIN OF CUSTODY RECORD        | vo.: 14-754<br>vo: 14-754<br>Method<br>Method<br>1. Polarized Light Microscopy (PLM)<br>2. PLM & Dispersion Staining |
|                                                        | Sampte<br>Type<br>Type                         |                  | E CHAIN OF CU                         | Job No.:<br>Method:<br>Method<br>1. Polnu                                                                            |
| ASBESTOS BULK SAMPLING DATA                            | HOUSE                                          |                  | Signatur                              | CA Lake C<br>CA Lake C<br>O'BRIEN C<br>2 N AROUN<br>2. Tremolylite<br>5. Tremolite                                   |
| A ODOM, INC.<br>NG ENGINEERS<br>ASBESTOS BUL           | Builtling & Sampling<br>Location<br>O 'B/21 SN |                  | Printed Name                          | Cllent Name:<br>Lab Name:<br>A Y · 7 V<br>Asbestos Type<br>1. Amosite<br>2. Chrysotile                               |
| PYBURN & ODOM, INC.<br>CONSULTING ENGINEERS<br>ASBESTO | 1000                                           |                  | IIme<br>IIme                          | 06052<br>06052<br>ceed: 472/00<br>3 D                                                                                |
|                                                        | Sample<br>ID No.<br>0420                       | 9 <b>2 6 1 2</b> | 10<br>11<br>12<br>Date<br><b>Date</b> | Batch #:Batch #:Date Collected:<br>Comments:Comments:A. Mitcrovac<br>B. Bulk                                         |

-

ī

i

#### APPENDIX G DEPARTMENT OF RECREATIOM AND TORISM LETTER

ļ.

ł

Ł

1

Mar. 27. 2006 3:59PM domain design

FAX NO. :2253440119

No. 0983 P. 3 Mar. 27 2006 03:24PM P1



State of Couisiana

OFFICE OF THE LIEUTENANT GOVERNON DEPARTMENT OF CULTURE, RECREATION & TOURISM OFFICE OF CULTURAL DEVELOPMENT DIVISION OF ARCHAEOLOGY ANGELE DAVIS

PAN BREAUX Angiotant Escretary

RECEIVED

MAR 2 0 2006

OFFICE OF COMMUNITY DEVELOPMENT

For: Joey From Tonya O'Brien House

March 17, 2006

MITCHELL J. LANDRIEU

LIGUTONANT, GOVERNON

Mr. Robert McNeese Urban Development Director Office of Community Development East Baton Rouge Parish P.O. Box 1471 Baton Rouge, LA 70821-1471

Re: Unanticipated Discovery, O'Brien House, Baton Rouge, East Baton Rouge Parish, Louislana

Dear Mr. McNeese:

Thank you for contacting our office about the cultural remains discovered during construction at the O'Brien House.

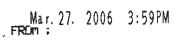
After personal inspection and a review of historic maps of the area, we have determined that the concrete slab encountered is likely the remaining foundation of a gasometer associated with the Baton Rouge Electric Company Gas Plant. Although the Gas Plant is shown on maps from 1903, the gasometer in question does not appear on maps until 1923. We believe that this gasometer foundation has no significant research potential. Therefore, we agree that the current construction project should proceed. However, because the majority of the historic Electric Company and Gas Plant was located to the east of the current project, any construction in that area may encounter significant cultural remains. We request that you contact our office prior to any construction work in that area.

Received Time Mar. 27. 3:23PM

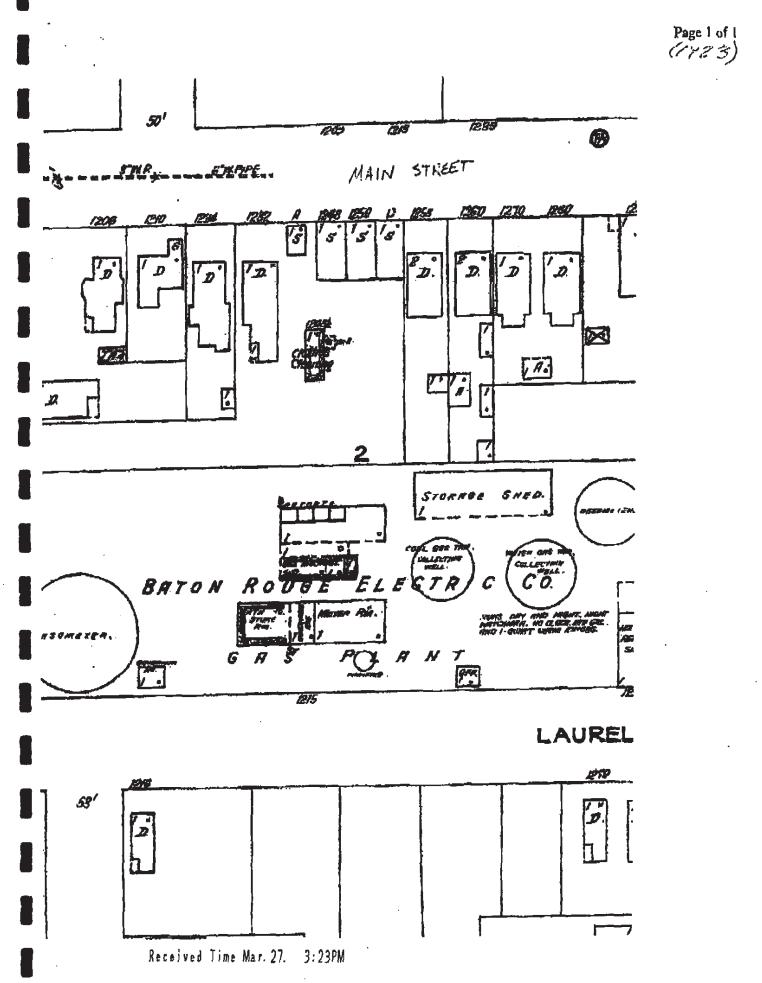
Mr. Robert McNeese March 17, 2006 Page 2

We have included a copy of the 1923 Sanborn map showing the gasometer, as well as a diagram and description of a gasometer, for your information. If you have any additional questions, please contact Cheraki Williams in the Division of Archaeology at (225) 342-8170.

Sincerely,


Pam Breaux

Pam Breaux State Historic Preservation Officer


PB:CW:s

Enclosures: as stated

Received Time Mar. 27. 3:23PM

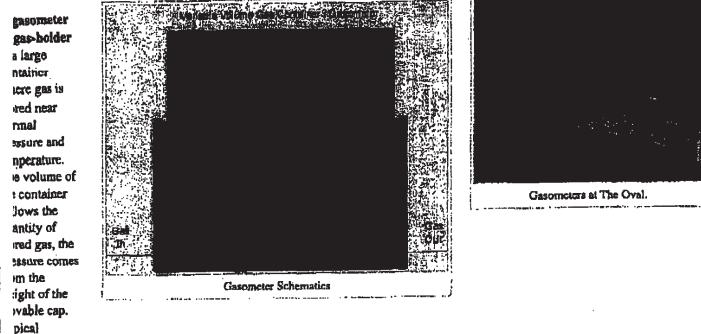


FAX ND. ;2253440119



Mar. 27. 2006 4:00PM

domain design


FAX ND. :2253440119

someter - Wikipedia, the free encyclopedia

Page 1 of 2

# lasometer

m Wikipedia, the free encyclopedia



lumes for large gasometers are about \$0000 m<sup>3</sup>, with 60 m diameter structures.

someters tend to be used for balancing purposes (making sure gas pipes operate within a safe range of pressures) rather than for tually storing gas for later use. Gas is nowadays stored in large underground reservoirs such as salt caverns. Often gas is stored in summer when it is cheap and sold in the winter when the price goes up.

isometers are often a major part of the skylines of low-risc British cities, due to their large distinctive shape and central location.

so a gasometer is a meter for measuring the amount of gas flowing through a particular pipe.

te term 'gasometer', was originally coined by William Murdoch, the inventor of gas lighting, in the early 1800s, Despite the jections of his associates that his "gazometer" was not a meter but a container the name was retained and came into general use.

#### æ also

Gasometer Vienna, Austria

### xternal links

- Gasometer Oberhausen, Germany (http://www.gasometer.de/)
- Gasometer Vienna, Austria (http://www.gasometer.org/en/)
- = Gasometer Schlieren, Switzerland (http://www.gasometer.ch/)

trieved from "http://en.wikipedia.org/wiki/Gasometer"

tegorics: Buildings and structures | Architecture stubs | Industry stubs



Modern gas containors



Wikimedia Commons has media related to: Gasometer

#### APPENDIX H LIMITATIONS

Т

i

Ì

#### LIMITATIONS

The findings and recommendations of this report are based upon the scope of work for this project as agreed to by the client. This investigation is limited strictly to identifying the potential presence of the specified contaminants of concern in the chosen locations of the borings, monitoring wells, and other samples. Identifying and quantifying these specified contaminants in the chosen locations is not to be interpreted as a guarantee of the nature and occurrence of these substances or other substances of concern elsewhere on the site.

All conclusions and recommendations regarding the findings of the investigation represent the professional opinions of Pyburn & Odom personnel involved with the project: the results of this report are not to be considered a legal interpretation of existing environmental regulations. Pyburn & Odom assumes no responsibility or liability for errors in data from sources outside of Pyburn & Odom or developments arising from situations outside the scope of this project.

No warranty is expressed or implied with the usage of such data since this information is subject to limitations, availability and accuracy of these records, reports, historical documentation and personal recollection of these persons contacted and interviewed by Pyburn & Odom.

# URS

July 27, 2007

| a da se a construction de la construcción de la construcción de la construcción de la construcción de la constru |                                                                                                       |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| LDEQ RECEIPT                                                                                                     | BENG AD CE FOR OUT TY                                                                                 |
| 2007 JUL 27 PM 2 4                                                                                               | Remediation of the second second                                                                      |
| Quality                                                                                                          | Manager: Dynamics Division<br>Team Leader: Peocen<br>Al #:<br>TEMPO Task #:<br>Dosk Copy File Adom: A |
|                                                                                                                  | GS-                                                                                                   |

Mr. Duane Wilson Louisiana Department of Environmental Quality Remediation Services Division P.O. Box 4314 Baton Rouge, LA 70821-4314

Re: Final Report: Phase II Environmental Site Assessment O'Brien House Property 1217 Laurel Street Baton Rouge, Louisiana LDEQ Contract No. 614825 Work Order No. 18 URS File No. 19228029.00001

Dear Mr. Wilson:

URS Corporation (URS) is pleased to submit three hard copies and one electronic copy of the final report, Phase II Phase II Environmental Site Assessment of the O'Brien House Property located at 1217 Laurel Street, Baton Rouge, Louisiana.

URS is pleased to be assisting LDEQ on this project. If you have questions or need additional information, please call us at (225) 922-5700.

Very truly yours, URS Corporation

Charles B. Dartez, CHMM Vice President

SK:rdm

Enclosure

W. John Allen Senior Scientist

URS Corporation 7389 Florida Boulevard, Suite 300 Baton Rouge, LA 70806 Tel: 225.922.5700 Fax: 225.922.5701

#### FINAL REPORT

# PHASE II ENVIRONMENTAL SITE ASSESSMENT

O'BRIEN HOUSE PROPERTY BATON ROUGE, LOUISIANA AGENCY INTEREST NO.: 9911 LDEQ CONTRACT NO. 614825 WORK ORDER # 18

Prepared for

Louisiana Department of Environmental Quality Baton Rouge, Louisiana

July 26, 2007

File No. 19228029.00001



URS Corporation 7389 Florida Boulevard Baton Rouge, Louisiana 70806 225/922-5700

# **TABLE OF CONTENTS**

#### VOLUME I

-

| Section 1 | Introdu | iction 1-1                                   |
|-----------|---------|----------------------------------------------|
| Section 2 | Investi | gation Activities                            |
|           | 2.1     | Sample Collection Procedures                 |
|           |         | 2.1.1 Drilling and Sampling of Soil Borings  |
|           |         | 2.1.2 Monitor Well Installation and Sampling |
|           |         | 2.1.3 Well Plugging and Abandonment          |
|           | 2.2     | Quality Assurance/Quality Control            |
|           | 2.3     | Documentation and Records                    |
| Section 3 | Discus  | sion of Results                              |
|           | 3.1     | Site Geology and HydroGeology                |
|           | 3.2     | Evaluation and Presentation of Results       |
|           | 3.3     | Soil Analytical Results                      |
|           | 3.4     | Groundwater Analytical Results               |
|           | 3.5     | QA/QC Results                                |
| Section 4 | Conclu  | usions 4-1                                   |
|           | 4.1     | Discussion of Findings and Conclusions 4-1   |
| Section 5 | Refere  | nces 5-1                                     |

~



# **TABLE OF CONTENTS**

#### TABLES

| Table 1 | Summary of Analytical Results for VOA for Constituents in Soils Exceeding        |
|---------|----------------------------------------------------------------------------------|
|         | RECAP Screening Standards                                                        |
| Table 2 | Summary of Analytical Results for VOA for Constituents in Soils Exceeding        |
|         | RECAP Screening Standards                                                        |
| Table 3 | Summary of Analytical Results for VOA and Screening Standards for Soils          |
| Table 4 | Summary of Analytical Results for SVOA and Screening Standards for Soils         |
| Table 5 | Summary of Analytical Results for Metals and Screening Standards for Soils       |
| Table 6 | Summary of Analytical Results for VOA and Screening Standards for<br>Groundwater |
| Table 7 | Summary of Analytical Results for SVOA and Screening Standards for Groundwater   |
| Table 8 | Summary of Analytical Results for Metals and Screening Standards for Groundwater |
|         |                                                                                  |

#### FIGURES

| Figure 1  | Site Location Map                                                            |
|-----------|------------------------------------------------------------------------------|
| Figure 2  | Sampling Location Map                                                        |
| Figure 3  | Cross Section Location Map                                                   |
| Figure 3A | Cross Section A-A'                                                           |
| Figure 4  | Potentiometric Map                                                           |
| Figure 5  | Detections of Constituents in Soils Exceeding Respective Screening Standards |
|           |                                                                              |

#### APPENDICES

- Appendix A Boring Logs
- Appendix B Temporary Well Installation Reports
- Appendix C Groundwater Collection Reports
- Appendix D Analytical Data Quality Assurance Review

#### **VOLUME II (TO BE PROVIDED WITH FINAL REPORT)**

Appendix E GCAL Analytical Laboratory Data Reports

# SECTIONONE

URS has completed field sampling for soil and groundwater at the O'Brien House Property (LDEQ Agency Interest No.: 9911). The work was consistent with the Louisiana Department of Environmental Quality's Targeted Brownfields Assessment (LDEQ/TBA) Contract 614825 and Work Order Number 18 dated October 4, 2006 requesting additional assessment activities at the site. The property is located at 1217 Laurel Street, Baton Rouge, Louisiana. The closest major waterway is the Mississippi River approximately 0.8 miles to the west. Figure 1 shows the site location of the property.

According to information provided by the LDEQ, the site was used by the Baton Rouge Gas Works in the late 1800s. The current site use is the O'Brien House. It was established in 1971 to serve adult recovering alcoholics and drug addicts. It is a halfway house that works with alcoholics and educates the public about alcoholism. The O'Brien House provides a comprehensive continuum of care that includes treatment, prevention and community development initiatives.

EPA conducted an investigation of the site in 2002 (report available upon request from the EPA). Phase I and II Environmental Site Assessments (ESA) of the site were conducted during April and May 2006, respectively. Results of sampling and analysis from the Phase II ESA indicated the presence of Semi-Volatile Organic Analytes in concentrations exceeding LDEQ Risk Evaluation Corrective Action (RECAP) Industrial Screening Standards in soil samples collected during this previous ESA. The site owner, O'Brien House, requested further assessment of the property under the LDEQ/TBA Program.

The work plan, dated February 23, 2007, for implementation of this Phase II Site Assessment called for the installation, sampling and plugging and abandonment of six 1-inch PVC monitor wells for soil and groundwater sampling purposes to an approximate depth below ground surface (BGS) of 18 feet. The sample locations, as shown on Figure 2, were determined per discussions with the LDEQ and per results of the previous Phase II ESA.

This report describes the procedures followed for sample collection, handling and documentation of samples; analytical parameters and methods; a description of geologic conditions encountered; and comparison to RECAP Screening Standards. Copies of the soil boring logs, monitor well installation reports and monitor well groundwater collection reports are presented in Appendices A through C respectively. Complete laboratory analytical data reports are available for review in Appendix D. This Site Investigation was completed in accordance with the ASTM E-1903-97 Standard Guide for Phase II Site Investigation. The



# **SECTION**ONE

field activities at the O'Brien House property began on April 2, 2007 and were completed on April 5, 2007.

URS

#### 2.1 SAMPLE COLLECTION PROCEDURES

Six soil borings were drilled at the O'Brien House property site. All of the soil borings were completed using Geoprobe<sup>TM</sup> direct-push methods. The Geoprobe<sup>TM</sup> drill rig was operated by Walker-Hill Environmental Services, Inc. (Walker Hill), a Louisiana Licensed Water Well Contractor as required under Louisiana Revised Statute R.S. 38:3098 through R.S. 38:3098.8, for contractors conducting borings. All sampling equipment was decontaminated prior to use in accordance with the procedures described in URS Sampling and Analysis Plan (dated February, 2007). Walker-Hill containerized all soil cuttings, well development and wash water, and disposable materials on site for proper disposal.

#### 2.1.1 Drilling and Sampling of Soil Borings

Six soil borings were installed as shown on Figure 2. Prior to drilling, each location was probed to identify unmarked utilities or other subsurface obstruction hazards. Each boring was advanced approximately 18 feet below ground surface (bgs) for soil sample collection, until the confining clay unit was encountered. Coordinates for the borings were determined using a hand-held GPS device and are noted on the Boring Logs presented in Appendix A.

Soil samples were collected continuously at 2-foot intervals. All soil samples were placed in jars and screened using an organic vapor meter (OVM) to sample the headspace after it has been allowed to stabilize for a minimum of 15 minutes. Each boring was continuously sampled and visually logged to the bottom of the boring in the field by a URS geologist. The soil boring logs are included in Appendix A.

At each soil boring, three soil samples were collected from the following intervals:

- 1. The sample from the 0- to 2-foot interval
- 2. The sample with the highest OVM reading, or if there are not vapors detected or all readings are similar; the sample collected at the soil/groundwater interface
- 3. The bottom borehole sample from the base of the first permeable zone

From each boring, samples were collected and submitted using Encore® samplers for volatiles analysis; in addition other samples were collected for SVOA and metals in



appropriate containers. The soil samples were placed on ice in a laboratory supplied ice chest to maintain the required temperature of 4 degrees Celsius and shipped to Pace Analytical Laboratory (Pace) in Saint Rose, LA via a Pace courier.

#### 2.1.2 Monitor Well Installation and Sampling

Temporary monitoring wells were installed in each of the borings. The wells were set to screen the interval where groundwater was encountered. Each well was constructed of 1-inch diameter, flush threaded, Schedule 40 PVC well casing and screen. The well screen consisted of 5 feet of 1-inch diameter Schedule 40 PVC pipe with 0.010-inch slots. The blank/riser pipe was a 1 inch Schedule 40 blank PVC pipe.

Upon completion of the installation of the well construction materials into the borehole, a 20/40 sieve-size clean silica filter sand was placed in the annulus between the borehole and the screen to a minimum depth equivalent to 2 feet above the top of the well screen (if feasible). A bentonite pellet seal was then placed above the sand and extended at least 2 feet 'above the filter pack. The remainder of each borehole was then grouted to ground surface using a Portland cement/sodium bentonite slurry. Monitor well installation reports are included in Appendix B. Each temporary monitor well was developed via surface pumping of the groundwater until indicator parameters stabilize.

Prior to sampling, a water level measurement was made using an electronic indicator with accuracy to  $\pm 0.01$  feet. The groundwater sample was collected from each monitoring well after purging at least three well volumes from the well, and after the specific conductivity, temperature and pH measurements of the purged water have stabilized. All sampling activities were recorded on the Groundwater Collection Report forms, presented in Appendix C. All purged water was drummed and stored on site in a limited access area.

A groundwater sample was collected from each well, with the exception of the well set in boring B-5. Temporary well B-5 did not produce sufficient water to collect a sample. Groundwater samples were collected for VOA, SVOA and metals analysis. The metals sample from each well was filtered using a 0.45 micron filter prior to containerization. All samples were shipped to Pace via courier for analysis.



#### 2.1.3 Well Plugging and Abandonment

All six temporary wells installed by URS were plugged and abandoned following implementation of field work and once all required samples had been collected. Wells were plugged and abandoned in accordance with the "Construction of Geotechnical Boreholes and Groundwater Monitoring Systems Handbook," Final Version, December 2000, as prepared by the Louisiana Department of Transportation and Development (LDOTD).

#### 2.2 QUALITY ASSURANCE/QUALITY CONTROL

The data collection and Quality Assurance/Quality Control (QA/QC) procedures followed during the Site Investigation were consistent with LDEQ RECAP and the sampling work plan. QA/QC samples were collected to assess the potential for contamination of samples due to field activities and/or handling and transport and were analyzed to evaluate precision and accuracy of the analytical data from the off-site laboratory. QC samples included field duplicate soil and groundwater samples to evaluate sample-to-sample analytical precision, matrix spike (MS), and matrix spike duplicate (MSD) samples of soil and groundwater to evaluate analytical accuracy; rinsate samples to demonstrate the effectiveness of decontamination of sampling equipment; and field blanks and trip blanks to evaluate potential cross contamination of samples.

Laboratory analyses were performed by Pace Analytical Laboratories of Saint Rose, Louisiana. Pace is certified by the LDEQ Environmental Laboratory Accreditation Program (Certificate Number 02006). All samples were analyzed using methods consistent with LDEQ RECAP Appendix B requirements.

Soil and groundwater samples collected from B-1 through B-6 were analyzed for the following "site-specific" parameters as designated in the Sampling and Analysis Work Plan:

- Target Compound List (TCL) Volatile Organic Analytes by Method 8260B/5035.
- TCL Semi-Volatile Organic Analytes (includes Chlorinated Organics) by Method 8270C.

Target Analyte List (TAL) Metals by Methods 6010C/7000/9012.



#### 2.3 DOCUMENTATION AND RECORDS

A field logbook was kept during field activities by the Field Team on-site. Information recorded in the field notebook includes the following:

- Facility name and location;
- Arrival and departure times;
- Sample personnel;
- Date, time and place of sampling;
- Sample identification numbers;
- Weather conditions; and
- Analyses and required preservation techniques.

All soil and groundwater samples were identified at the time of collection with a sample label affixed to the sample container. The sample labels were written legibly and in indelible ink and included the following:

- The project name and number;
- Sample identification numbers;
- Date, time, and place of collection;
- Identification of preservatives used;
- Analysis requested; and
- Sampler's initials.

Each soil sample was labeled with the boring number and the depth interval that was collected, for example B-1(0-2) was the label used for Boring B-1, depth interval 0 to 2-feet bgs. Groundwater samples were labeled with the boring number and then with a W to identify that it was a water sample. The labeled sample jars were placed in an ice chest with ice to maintain the required 4 degrees Celsius temperature. The sample ice chest was maintained in custody at all times. Chain-of-Custody seals were used to secure sample ice chests for shipment.

After samples were collected, a chain-of-custody form was completed to document sample collection, handling, and transport to the laboratory facilities, and acceptance by authorized laboratory personnel. URS completed a chain-of-custody form for each sample ice chest. Additional documentation maintained during field activities included soil boring logs;



monitor well installation reports, groundwater collection forms, and daily safety meeting report forms.

URS

#### 3.1 SITE GEOLOGY AND HYDROGEOLOGY

Soils encountered in the six Borings B-1 through B-6 advanced at the site consisted of a tan, brown and gray silty clay that had iron staining and was stiff to very stiff. Some black cinderlike material was encountered in the upper soils at boring B-1, B-2, B-3 and B-4. The first permeable zone, a gray to light gray silt was encountered in all borings except B-5. Water was observed at depths ranging from 3 to 18 feet bgs. The bottom confining layer, a stiff, brown and tan clay to silty clay was present at a depth of approximately 18 bgs in all borings. Figure 3 and 3A depict the cross section transect and a typical cross section of subsurface stratigraphy for the site.

The apparent potentiometric surface as measured from the temporary monitor well static water levels is shown in Figure 4. Based on these data, a hydraulic gradient of 0.12 ft/ft is present at the site and groundwater flow is generally to the north. Well development and groundwater sampling data for the sixteen temporary monitoring wells are located in Appendix C.

#### 3.2 EVALUATION AND PRESENTATION OF RESULTS

All soil and water samples were shipped to Pace for analysis. The laboratory reports are included as Appendix E. Analytes detected above Practical Quantitation Limits (PQLs) were compared to their respective RECAP Screening Standards (SS); in this sampling event, the soil screening standards for the constituent concentrations in surface soils (0 feet to 15 feet bgs) that are protective of human health for industrial/commercial land use (Soil\_SSi) and the constituent concentrations in soil that are protective of groundwater (Soil\_SSGW) were considered for surface soils. The lesser value of the Industrial Soil Screening Standards or Soil Protective of Groundwater Screening Standards (Soil\_SSi and Soil\_SSGW respectively) for each constituent, listed as the Screening Standards in RECAP Table 1, were selected for comparison to analytical results from soil samples. For groundwater samples, the Groundwater Screening Standards protective of human health (GW\_SS) were selected for comparison to analytical results from groundwater samples.

#### 3.3 SOIL ANALYTICAL RESULTS

Soil samples were screened in the field using an OVM. The only screened sample interval having a detectable reading for organic vapor was from Boring B4 in the 2 to 4-foot interval with an OVM reading of 31.3 ppm. All other OVM readings were 0.0 ppm.



Each soil sample was labeled with the boring number and the depth interval that was collected, for example B-1(0-2) was the label used for boring 1, depth interval 0 to 2-feet bgs. As discussed, three soil samples from each boring were collected. VOA readings were detected in 4 of the 18 samples. Xylene was detected in sample B-4(2-4) at a concentration of 66.4 mg/kg, which exceeded the SS of 2.191 mg/kg. No other VOA detections exceeded their respective SS. Acetone was detected at a concentration of 0.0144 mg/kg in the sample from B-1(0-2). In the sample B-3(0-2), acetone was detected at a concentration of 0.00496 mg/kg. Sample B-3(2-4) also had acetone detected at 0.011 mg/kg and methylene chloride at 0.00557mg/kg. Ethylbenzene was detected at a concentration of at 6.38 mg/kg in sample B-4(2-4). Soil analytical results for VOA are presented in Table 3.

SVOA were detected in 7 of the 18 soil samples. Acenaphthlyene was detected in B-1(0-2) at a concentration of 0.473 mg/kg and detected in B-2 (0-2) at a concentration of 0.573 mg/kg. Both of these concentrations are below their respective SS. Anthracene was detected in B-2(0-2) at a concentration of 0.738 mg/kg and detected in B-3(2-4) at a concentration of 0.482 mg/kg. Both of these detections are below the applicable SS. Benzaldehyde was detected at a concentration of 1.3 mg/kg in B-1(16-18). There is no SS listed in RECAP Table 1 for this constituent. Benzo(k)fluoranthane was detected in B-1(0-2) at a concentration of 0.987 mg/kg, in B-2(0-2) at a concentration of 2.36 mg/kg, in B-3 (2-4) at a concentration of 0.575 mg/kg, and in B-4(0-2) at a concentration of 2.16 mg/kg. All of these results are below the applicable SS. Benzo(g,h,i) pervlene was detected in B-1(0-2) at a concentration of 0.514 mg/kg, in B-1(16-18) at a concentration of 0.89 mg/kg, and in B-2(0-2) at a concentration of 0.642 mg/kg. No SS is listed in RECAP Table 1 for this constituent. Carbazole was detected in B-3(2-4) at a concentration of 0.421 mg/kg. No SS is listed in RECAP Table 1 for this constituent. Chrysene was detected in six soil samples, all detections were at concentrations below the applicable SS. Chrysene was detected at a concentration of 1.4 mg/kg in B-1(0-2), 1.06 mg/kg in B-1(16-18), 3.96 mg/kg in B-2(0-2), 0.533 mg/kg in B-3(0-2), 1.17 mg/kg in B-3(2-4), and 3.32 mg/kg in B-4(0-2). Fluoranthene was detected in six samples, all detections were at concentrations below the applicable SS. Flouoranthene was detected at a concentration of 2.55 mg/kg in B-1(0-2), 1.61 mg/kg in B-1(16-18), 6.17 mg/kg in B-2(0-2), 1.12 mg/kg in B-3(0-2), 3.01 mg/kg in B-3(2-4), and 4.78 mg/kg in B-4(0-2). Indeno(1,2,3cd)pyrene was detected in B-1(0-2) at a concentration of 0.479 mg/kg, and B-2(0-2) at a concentration of 0.724 mg/kg; both detections are below the applicable SS. Phenanthrene was detected in five samples, all detections were at concentrations below the applicable SS. Phenanthrene was detected in B-1(0-2) at a concentration of 0.742 mg/kg, in B-2(0-2) at a



concentration of 3.35 mg/kg, in B-3(0-2) at a concentration of 0.778 mg/kg, in B-3(2-4) at a concentration of 2.34 mg/kg, and in B-4(0-2) at a concentration of 1.9 mg/kg. Pyrene was detected in B-1(0-2) at a concentration of 2.33 mg/kg, in B-1(16-18) at a concentration of 1.34 mg/kg, in B-2(0-2) at a concentration of 5.34 mg/kg, in B-3(0-2) at a concentration of 2.55 mg/kg, and in B-4(0-2) at a concentration of 5.86 mg/kg. These detections of pyrene were all below the applicable SS. Soil analytical results for SVOA are presented in Table 4. SVOA detected in concentrations that exceeded their respective SS are summarized below:

Benzo(a)pyrene was detected B-1 (0-2) at a concentration of 1.6 mg/kg, which exceeded the SS of 0.33 mg/kg.

Benzo(a)anthracene was detected in B-2 (0-2) at a concentration of 4.05 mg/kg, which exceeded the SS of 2.9 mg/kg. Benzo(b)fluoranthane was detected in B-2 (0-2) at a concentration of 3.91 mg/kg, which exceeded the SS of 2.9 mg/kg. Benzo(a)pyrene was detected in B-2 (0-2) at a concentration of 3.04 mg/kg, which exceeded the SS of 0.33 mg/kg.

Benzo(a)pyrene was detected in B-3 (0-2) and (2-4) at a concentrations of 0.444 mg/kg and 1.1 mg/kg respectively, which exceeded the SS of 0.33 mg/kg.

Benzo(a)anthracene was detected in B-4 (0-2) at a concentration of 3.17 mg/kg, which exceeded the SS of 2.9 mg/kg. Benzo(b)fluoranthane was detected in B-4 (0-2) at a concentration of 5.59 mg/kg, which exceeded the SS of 2.9 mg/kg.

• Benzo(a)pyrene detected in B-4 (0-2) and (16-18) at concentrations of 3.36 mg/kg and 1.65 mg/kg respectively, which exceeded the SS of 0.33 mg/kg.

No detections of metals in soil samples exceeded their respective SS with the exception of lead. Lead was detected in B-4 (0-2) at a concentration of 439 mg/kg, which exceeded the SS of 100 mg/kg. The following are the highest concentrations of metals detected in soil samples that have SS listed in RECAP Table 1 with their respective concentrations and sample intervals: arsenic, 6.67 mg/kg, B-3 (16-18); barium, 1080 mg/kg, B-4 (2-4); beryllium, 2.58 mg/kg, B-1 (6-8); cadmium, 0.995 mg/kg, B-5 (16-18); chromium, 17.10, B-4 (0-2); cobalt, 15.1 mg/kg, B-6 (16-18); copper, 90.9 mg/kg, B-4 (0-2); mercury, 3.45



mg/kg, B-4 (0-2); nickel, 25.7 mg/kg, B-6 (16-18); vanadium, 39.4 mg/kg, B-3 (2-4); and zinc, 142 mg/kg, B-4 (0-2). Metals having no SS listed in RECAP Table 1, aluminum, calcium, iron, magnesium, manganese, potassium and sodium were detected in all soil samples at concentrations generally consistent with background concentrations for soils. Soil analytical results for Metals are presented in Table 5. Reports of Laboratory Analysis of soil/ samples are included as Appendix E.

#### 3.4 GROUNDWATER ANALYTICAL RESULTS

As noted, a groundwater sample was collected from each borehole with the exception of B-5 which did not produce water. Each of the 5 samples was analyzed for VOA, SVOA and Metals. Each metals sample was filtered in the field prior to shipment to the laboratory.

The groundwater results for VOA indicate that only two constituents were present above the detection limit. Trans-1,3-Dichloropropene was detected in monitor well B-4W at a concentration of 0.00613 mg/L, which exceeded the SS of 0.005 mg/L. Total xylene was detected in the groundwater sample from well B-4W at a concentration of 0.0526 mg/L, which was below the RECAP standard of 10 mg/L. Groundwater analytical results for VOA are presented in Table 6.

SVOA constituents were all below the detection limits for groundwater samples collected from wells B-1W, B-2W and B-6W. Naphthalene was detected in B-3W at a concentration of 0.028 mg/L, which exceeded the SS of 0.010 mg/L. Five SVOA constituents were detected above their respective SS in groundwater samples from B-4W. Dibenzofuran was detected in B-4W at a concentration of 0.046 mg/L (SS of 0.01 mg/L), fluorine at a concentration of 0.0498 mg/L (SS of 0.024 mg/L), naphthalene at a concentration of 0.381 mg/L (SS of 0.01 mg/L), and pyrene at a concentration of 0.024 mg/L (SS of 0.018 mg/L). Groundwater analytical results for SVOA are presented in Table 7.

No metals detected in any groundwater samples exceeded their respective SS. The maximum concentration of Copper detected in groundwater samples was 0.0135 mg/L in well B-6W. The maximum concentration of lead detected in groundwater samples was 0.00967 mg/L in B-1W. The maximum concentration of zinc detected in groundwater samples was 0.033 mg/L in B-6W. Metals having no SS listed in RECAP Table 1, aluminum, calcium, iron, magnesium, manganese, and sodium were detected in all groundwater samples at concentrations generally consistent with expected background concentrations. No potassium was detected in any groundwater sample. Groundwater analytical results for Metals are



presented in Table 8. Reports of Laboratory Analysis of soil samples are included as Appendix E.

#### 3.5 QA/QC RESULTS

During the sampling event QA/QC samples were collected including trip blanks, soil and water duplicate samples, matrix spike and matrix spike duplicate samples, a rinsate blank and a field blank. Analytical results for QA/QC samples are presented in Appendix E.

Four trip blanks were collected and analyzed for VOA. Trip blank results generally indicated that contaminants were not acquired during the transport and storage of samples. VOA were not detected in any of the trip blanks. A soil duplicate B-1D (0-2) was collected from the 0 to 2-foot interval of Boring B-1. The results are similar but show some variation which is most likely explained by the inconsistencies in the sample matrix. A duplicate water sample B-1WD was collected from groundwater in Boring B-1. The results of the groundwater duplicate are similar to the sample but also show some variation in metals content. A matrix spike and matrix spike duplicate soil sample was collected from Boring B-2 at the 16 to 18-foot interval. A groundwater matrix spike and matrix spike duplicate spike and matrix spike duplicate spike spike and matrix spike duplicate spike spike spike spike duplicate spike spike and matrix spike duplicate spike spike

A rinsate sample, collected by pouring deionized water over sampling equipment was collected at the location of Boring B-5. A field blank was also collected at the location of Boring B-5. All of the parameters for both the rinsate and the field blank were below detection limits providing verification that analytes were not introduced by sampling equipment or procedures.



# SECTIONFOUR

#### 4.1 DISCUSSION OF FINDINGS AND CONCLUSIONS

In summary, URS Corporation (URS) developed and subsequently implemented a Phase II Environmental Site Assessment (Phase II ESA) Sampling Work Plan (SWP) to target identification of impacted areas within the site limits. Performance of this Site Investigation was consistent with Louisiana's Risk Evaluation/Corrective Action Program (RECAP) and was completed in accordance with the ASTM 1903-97 Standard Guide for Environmental Site Assessments.

According to information provided by the LDEQ, the site was used by the Baton Rouge Gas Works in the late 1800's. The current site use is the O'Brien House. It was established in 1971 to serve adult recovering alcoholics and drug addicts. It is a halfway house that works with alcoholics and educates the public about alcoholism. The O'Brien House provides a comprehensive continuum of care that includes treatment, prevention and community development initiatives.

The potentiometric surface as measured from the temporary monitor well static water levels is shown in Figure 4. Based on these data, a hydraulic gradient of 0.12 ft/ft is present at the site and groundwater flow is generally to the north. The closest major waterway is the Mississippi River approximately 0.8 miles to the west.

EPA conducted an investigation of the site in 2002 (report available upon request from the EPA). Phase I and II Environmental Site Assessments (ESA) of the site were conducted during April and May 2006 respectively. Results of sampling and analysis from the Phase II ESA indicated the presence of Semi-Volatile Organic Analytes in concentrations exceeding LDEQ Risk Evaluation Corrective Action (RECAP) Industrial Screening Standards (SS) in soil samples collected during this previous ESA.

Soil and groundwater samples collected from B-1 through B-6 for this assessment were analyzed for the following "site-specific" parameters as designated in the Sampling and Analysis Work Plan:

- Target Compound List (TCL) Volatile Organic Analytes by Method 8260B/5035.
- TCL Semi-Volatile Organic Analytes (includes Chlorinated Organics) by Method 8270C.



# **SECTION**FOUR

- .
- Target Analyte List (TAL) Metals by Methods 6010C/7000/9012.

Six soil borings were drilled at the O'Brien House property site. Three soil samples and one groundwater sample were collected from each boring location with the exception of B-5 where a groundwater sample could not be obtained. The samples were sent to Pace Analytical Laboratory for VOA, SVOA and Metals analysis. Each groundwater sample collected for Metals analysis was filtered in the field.

From each boring, samples were collected and submitted using Encore<sup>®</sup> samplers for VOA analysis; in addition other samples were collected for SVOA and Metals in appropriate containers. The soil samples were placed on ice in a laboratory supplied ice chest to maintain the required temperature of 4 degrees Celsius and shipped to Pace Analytical Laboratory (Pace) in Saint Rose, LA via a Pace courier.

Each soil sample was labeled with the boring number and the depth interval that was collected, for example B-1(0-2) was the label used for Boring B-1, depth interval 0 to 2-feet bgs. VOA were detected in 4 of the 18 samples. Xylene was detected in sample B-4(2-4) at a concentration of 66.4 mg/kg, which exceeded the SS of 2.191 mg/kg. No other VOA exceeded their respective SS in soil samples.

SVOA were detected in 7 of the 18 soil samples. SVOA detected in concentrations that exceeded their respective SS are summarized below:

- Benzo(a)pyrene was detected B-1 (0-2) at a concentration of 1.6 mg/kg, which exceeded the SS of 0.33 mg/kg.
- Benzo(a)anthracene was detected in B-2 (0-2) at a concentration of 4.05 mg/kg, which exceeded the SS of 2.9 mg/kg. Benzo(b)fluoranthane was detected in B-2 (0-2) at a concentration of 3.91 mg/kg, which exceeded the SS of 2.9 mg/kg. Benzo(a)pyrene was detected in B-2 (0-2) at a concentration of 3.04 mg/kg, which exceeded the SS of 0.33 mg/kg.
- Benzo(a)pyrene was detected in B-3 (0-2) and (2-4) at a concentrations of 0.444 mg/kg and 1.1 mg/kg respectively, which exceeded the SS of 0.33 mg/kg.



# **SECTION**FOUR

Benzo(a)anthracene was detected in B-4 (0-2) at a concentration of 3.17 mg/kg, which exceeded the SS of 2.9 mg/kg. Benzo(b)fluoranthane was detected in B-4 (0-2) at a concentration of 5.59 mg/kg, which exceeded the SS of 2.9 mg/kg.

•

Benzo(a)pyrene detected in B-4 (0-2) and (16-18) at concentrations of 3.36 mg/kg and 1.65 mg/kg respectively, which exceeded the SS of 0.33 mg/kg.

No Metals detected in soil samples exceeded their respective SS with the exception of lead. Lead was detected in B-4 (0-2) at a concentration of 439 mg/kg, which exceeded the SS of 100 mg/kg.

A groundwater sample was collected from each borehole with the exception of B-5 which did not produce water. Each of the 5 samples was analyzed for VOA, SVOA and Metals. Each Metals sample was filtered in the field prior to shipment to the laboratory.

The VOA results for groundwater analyses indicate that two constituents were detected above the detection limit. Trans-1,3-Dichloropropene was the only VOA detected above the respective SS. Trans-1,3-Dichloropropene was detected in well B-4W at a concentration of 0.00613 mg/L, which exceeded the SS of 0.005 mg/L.

SVOA were all below the detection limits for groundwater samples collected from wells B-1W, B-2W and B-6W. Naphthalene was detected in B-3W at a concentration of 0.028 mg/L, which exceeded the SS of 0.010 mg/L. Five SVOA constituents were detected above their respective SS in groundwater samples from B-4W. Dibenzofuran was detected in B-4W at a concentration of 0.046 mg/L (SS of 0.01 mg/L), fluorine at a concentration of 0.0498 mg/L (SS of 0.024 mg/L), naphthalene at a concentration of 0.381 mg/L (SS of 0.01 mg/L), and pyrene at a concentration of 0.024 mg/L (SS of 0.018 mg/L).

No metals detected in any groundwater samples exceeded their respective SS. Figures 5 and 6 show constituents by boring on the Site Map that were detected in soil and groundwater samples at concentrations exceeding their respective Screening Standards.



# SECTIONFIVE

Phase I Environmental Site Assessment, O'Brien House Property, 1200 Main Street, Baton Rouge, Louisiana, Pyburn and Odom, April 4, 2006.

Phase II Environmental Site Assessment, O'Brien House Property, 1200 Main Street, Baton Rouge, Louisiana, Pyburn and Odom, May 15, 2006.

Risk Evaluation/Corrective Action Program (RECAP), Louisiana Department of Environmental Quality, Corrective Action Group, October 20, 2003.

The Louisiana Voluntary Remediation Regulations (LAC 33:VI.Chapter 9).

U.S. Geological Survey. 7.5-Minute Series Topographic Quadrangle Maps, "Baton Rouge West, Louisiana," Photorevised 1995.

I:Projects/LDEQ119228029-O'Brien House Propl\_WP1000011/OBrien House\_PIIESA\_TXT.doc113\_JUL-07/BTR 5-1

.

. . .

#### TABLES



TABLE 1

# SUMMARY OF ANALYTICAL RESULTS FOR CONSTITUENTS IN GROUNDWATER SAMPLES EXCEEDING RECAP SCREENING STANDARDS PHASE II SITE INVESTIGATION 1217 LAUREL STREET BATON ROUGE, LOUISIANA

SAMPLES COLLECTED IN APRIL 2007

| Ē       |                           |              |              |              |              |
|---------|---------------------------|--------------|--------------|--------------|--------------|
| B-4W    | 0.00613                   | 0.0462       | 0.0498       | 0.381        | 0.024        |
| B-3W    | ND                        | DN           | ND           | 0.028        | QN           |
| Units   | mg/L                      | mg/L         | mg/L         | mg/L         | mg/L         |
| GW SSi  | 5.0E-03                   | 1.0E-02      | 0.024        | 0.010        | 0.018        |
| CAS     | 10061-02-6                | 132-64-9     | 86-73-7      | 91-20-3      | 129-00-0     |
| Analyte | trans-1,3-Dichloropropene | Dibenzofuran | Fluorene     | Naphthalene  | Pyrene       |
| Method  | SVV-846 8260B/5030        | SW-846 8270C | SW-846 8270C | SW-846 8270C | SW-846 8270C |

Notes:

**Bold** indicates constituents that exceed RECAP Screening Standards. ND - Analyte not detected in any sample above the respective method detection limits.

Page 1 of 1

Introjects LDECh19223029-CrBrien House Propi, WP0000140Brien House, PRESA\_T1 & T2, xbr7-1

í

MA 2017/102/01/1

TABLE 2

# PHASE II SITE INVESTIGATION SUMMARY OF ANALYTICAL RESULTS FOR CONSTITUENTS IN SOIL SAMPLES EXCEEDING RECAP SCREENING STANDARDS 1217 LAUREL STREET BATON ROUGE, LOUISIANA SAMPLES COLLECTED IN APRIL 2007

| B-4(16-18) | QN                | 1.79*              | 2.34*                | 1.65           | 19.2*        |
|------------|-------------------|--------------------|----------------------|----------------|--------------|
| B-4(2-4)   | 66.4              | QN                 | QN                   | DN             | 16.9*        |
| B-4(0-2)   | an                | 3.17               | 5.59                 | 3.36           | 439.0        |
| B-3(2-4)   | QN                | 1.26*              | 2.06*                | 1.1            | 28.7*        |
| B-3(0-2)   | QN                | 0.503*             | 0.627*               | 0.444          | 16.5*        |
| B-2(0-2)   | QN                | 4.05               | 3.91                 | 3.04           | 27.7*        |
| B-1(0-2)   | QN                | 1.49*              | 1.96*                | 1.6            | 48.8*        |
| Units      | mg/kg             | mg/kg              | mg/kg                | mg/kg          | mg/kg        |
| SOIL SSGW  | 1.5E+02           | 3.3E+02            | 2.2E+02              | 2.3E+01        | 1.0E+02      |
| SOIL SSI   | 2.2E+00           | 2.9E+00            | 2:9E+00              | 3.3E-01        | 1.4E+03      |
| CAS        | 1330-20-7         | 56-55-3            | 205-99-2             | 50-32-8        | 7439-92-1    |
| Analyte    | Xylene (total)    | Benzo(a)anthracene | Benzo(b)fluoranthene | Benzo(a)pyrene | Lead         |
| Method     | SW-846 8260b/5030 | SW-846 8270C       | SW-846 8270C         | SW-846 8270C   | SW-846 6010B |

Notes:

**Bold** indicates constituents that exceed RECAP Screening Standards. ND - Analyte not detected in any sample above the respective method detection limits. \* Detected above PQL but did not exceed RECAP Screening Standard. 7/13/2007/11/35 AM

Page 1 of 1

PRESALTI & TIJAMT-7

LORG11822

ί

| 9.00782         30.00180         9.00453         9.00459         9.00459           9.00311         9.00443         9.00453         9.00456         9.00456           9.00311         9.00443         9.00452         9.00446         9.00456           9.00311         9.00443         9.00443         9.00446         9.00446           9.00311         9.00443         9.00443         9.00446         9.00446           9.00311         9.00443         9.00443         9.00446         9.00446           9.00311         9.00443         9.00443         9.00446         9.00446           9.00311         9.00443         9.00443         9.00446         9.00446           9.00311         9.00443         9.00443         9.00446         9.00446           9.00311         9.00443         9.00443         9.00443         9.00446           9.00311         9.00443         9.00443         9.00443         9.00446           9.00311         9.00443         9.00443         9.00443         9.00446           9.00311         9.00443         9.00443         9.00443         9.00446           9.00311         9.00443         9.00443         9.00446         9.00446           9.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +++++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt;0.00926</li> <li>&lt;0.00926</li> <li>&lt;0.00463</li> </ul> | <0.00886         <0.00931           <0.00486         <0.00466           <0.00444         <0.00466           <0.00444         <0.00466           <0.00444         <0.00466           <0.00444         <0.00466           <0.00488         <0.00466           <0.00488         <0.00466 | 11 <0.00893<br>166 <0.00446<br>166 <0.00446<br>166 <0.00446<br>166 <0.00446<br>166 <0.00446 | <ul> <li>&lt;0.00885</li> <li>&lt;0.00874</li> <li>&lt;0.00432</li> <li>&lt;0.00432</li> <li>&lt;0.00432</li> <li>&lt;0.00437</li> <li>&lt;0.00437&lt;</li></ul> | <0.00888 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>&lt;0.0108</li> <li>&lt;0.0108</li> <li>&lt;0.00542</li> <li>&lt;0.00542<th><ul> <li>&lt;0.00326</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul></th><th></th><th></th><th></th><th>&lt;0.00888</th></li></ul> | <ul> <li>&lt;0.00326</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul>                                                                |                                                                                                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00888 |
| (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1)         (1) <td><ul> <li>&lt;0.00542</li> </ul></td> <td><ul> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul></td> <td></td> <td></td> <td></td> <td>&lt;0.00444</td>                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>&lt;0.00542</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul>                                                                |                                                                                                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00444 |
| 16:00         16:00         16:00         16:00         16:00         10:00         000031         000031         000033         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043         000043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul>                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 3.6         4.6         7         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> <li>&lt;0.00542</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul>                                                                                                                               |                                                                                                                                                                                                                                                                                       | +                                                                                           | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00444 |
| 4.6E-00         5.6E-00         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <th< td=""><td><pre>&lt;0.00542<br/>&lt;0.0108<br/>&lt;0.00542<br/>&lt;0.00542<br/>&lt;0.00542<br/>&lt;0.00542</pre></td><td><ul> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul></td><td></td><td>ł</td><td>⊢</td><td>&lt;0.00444</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>&lt;0.00542<br/>&lt;0.0108<br/>&lt;0.00542<br/>&lt;0.00542<br/>&lt;0.00542<br/>&lt;0.00542</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul>                                                                                                                                                    |                                                                                                                                                                                                                                                                                       | ł                                                                                           | ⊢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |
| 3.5.5.0         1.5.7.0         1.6.9.0         1.0         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0014         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0017         0.0014         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>&lt;0.0108</pre> <0.010842<0.00542<0.00542<0.00542<0.00542<0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt;0.00926</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> <li>&lt;0.00463</li> </ul>                                                                                                                                                                         | -+                                                                                                                                                                                                                                                                                    |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00444 |
| Literior         Nillerin         May         No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.00542<br><0.00542<br><0.00542<br><0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00463<br><0.00463<br><0.00463                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                     | ┝                                                                                           | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0 0088B |
| 1.5         1.6         1.6         0.0041         0.0041         0.0041         0.0041         0.0041         0.0041         0.0041         0.0041         0.0041         0.0041         0.0041         0.0041         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00542<br><0.00542<br><0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00463                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       | +                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000    |
| 1.25510         3.96; 00         mmAg         No         NO         0.00413         0.00443         0.00223         0.00223         0.00224         0.00224         0.00244         0.00244         0.00244         0.00244         0.00224         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.00244         0.002444         0.00244 </td <td>&lt;0.00542</td> <td>&lt;0.00463</td> <td>+-</td> <td></td> <td>+</td> <td>-0.0444</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               | +-                                                                                                                                                                                                                                                                                    |                                                                                             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0444  |
| 3.0.Ee(10)         3.0.Ee(10)         3.0.Ee(10)         3.0.Ee(10)         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0.11         3.0.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×0.00463                                                                                                                                                                                                                                                               | 0.00444 <0.00466                                                                                                                                                                                                                                                                      |                                                                                             | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00444 |
| 3.56(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1)         0.66(1) <t< td=""><td>&lt;0.00542</td><td></td><td>-</td><td>_</td><td>&lt;0.00442</td><td>&lt;0.00444</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                     | _                                                                                           | <0.00442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00444 |
| 7.38-60         1.88-70         1.38-70         1.38-70         1.38-70         1.39-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70         1.30-70 <t< td=""><td></td><td>&lt;0.00463</td><td>&lt;0.00444 &lt;0.00466</td><td>66 &lt;0.00446</td><td>&lt;0.00442 &lt;0.00437</td><td>&lt;0.00444</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.00463                                                                                                                                                                                                                                                               | <0.00444 <0.00466                                                                                                                                                                                                                                                                     | 66 <0.00446                                                                                 | <0.00442 <0.00437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |
| 5.4         00         10         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               | <0.00444 <0.00466                                                                                                                                                                                                                                                                     | _                                                                                           | <0.00442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00444 |
| 4.7%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5%         7.5% <th< td=""><td>&lt;0.00542</td><td>&lt;0.00463</td><td>_</td><td>166 &lt;0.00446</td><td>&lt;0.00442</td><td>&lt;0.00444</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                     | 166 <0.00446                                                                                | <0.00442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00444 |
| 16-00         3-5-07         m <sup>2</sup> /m <sup>2</sup> h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00463                                                                                                                                                                                                                                                               | <0.00444 <0.00466                                                                                                                                                                                                                                                                     |                                                                                             | <0.00442 <0.00437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |
| mode         mode <th< td=""><td>&lt;0.00542</td><td>&lt;0.00463</td><td>&lt;0.00444 &lt;0.00466</td><td>-</td><td>&lt;0.00442</td><td>&lt;0.00444</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               | <0.00444 <0.00466                                                                                                                                                                                                                                                                     | -                                                                                           | <0.00442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00444 |
| 1         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       | 166 <0.00448                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |
| 3.46:01         0.66:07         mphy         No         NO         0.0013         0.0013         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00433         0.00443         0.00433         0.00443         0.00433         0.00443         0.00433         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443         0.00443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00926                                                                                                                                                                                                                                                               | 10000888 <0.00331                                                                                                                                                                                                                                                                     | -                                                                                           | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00888 |
| 1.8E-00         7.7E-01         1190-10         100021         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431         0.00431 <th< td=""><td>&lt;0.00542</td><td>&lt;0.00463</td><td>0.00444 &lt;0.00</td><td></td><td>&lt;0.00442</td><td>&lt;0.00444</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               | 0.00444 <0.00                                                                                                                                                                                                                                                                         |                                                                                             | <0.00442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00444 |
| The for         The for <t< td=""><td>_</td><td>&lt;0.00463</td><td>&lt;0.00444 &lt;0.00466</td><td>66 &lt;0.00446</td><td></td><td>&lt;0.00444</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00463                                                                                                                                                                                                                                                               | <0.00444 <0.00466                                                                                                                                                                                                                                                                     | 66 <0.00446                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00444 |
| Tuberov         Tuberov <t< td=""><td>&lt;0.00542</td><td>&lt;0.00463</td><td></td><td></td><td>&lt;0.0040</td><td>-0.00444</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |                                                                                             | <0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.00444 |
| Terror         All         All         ND         COD413         COD331         COD331         COD412         COD416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                       | t                                                                                           | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| -105-01 -102-02 mg/19 No ND NO 000113 000131 000419 0100422 0.00448 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0.00458 0. | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                     | t                                                                                           | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -DOMAA   |
| ZUTEVIC 135 00439 10 00439 10 00439 10 00439 10 00433 10 00439 10 00433 10 00422 10 00448 10 00456 10 00456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                     | t                                                                                           | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO DOAAA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00463                                                                                                                                                                                                                                                               | <0.00444 <0.00466                                                                                                                                                                                                                                                                     | t                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AD DOALA |
| 1.15 0.00836 c0.00805 c0.00806 c0.00806 c0.00806 c0.00806 c0.00806 c0.00807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00926                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                     | t                                                                                           | <0.00885 <0.00874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000    |
| 7.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.0001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 | <0.00472 <0.00542 <2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.00463                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                     | +                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000000   |
| 3.1E-03 0.4E-00 m0/4g N0 ND ND <0.00226 <0.00782 <0.00865 <0.00843 <0.00896 <0.00912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00926                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                     | t                                                                                           | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100000   |
| 1.1E+01 m9/kg No ND ND ND <0.00413 <0.00449 <0.00433 <0.00432 <0.00448 <0.00456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0 DAGS                                                                                                                                                                                                                                                                | t                                                                                                                                                                                                                                                                                     | t                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000    |
| 2.05.100 0.05.13 m9/kg No ND ND <0.00413 <0.00491 <0.00433 <0.00432 <0.00428 <0.00422 <0.00488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO DMG1                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                     | +                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 35E401 18E401 m9/kg No ND ND <0.00413 <0.00391 <0.00449 <0.00432 <0.00448 <0.00456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KD ONES                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                     | atton 00 00                                                                                 | 1000000 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×0.00444 |
| 4./2+02 2.02+01 m9/kg No ND ND <0.00413 <0.00413 <0.00439 <0.00433 <0.00432 <0.00448 <0.00456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000 V                                                                                                                                                                                                                                                                | t                                                                                                                                                                                                                                                                                     | +                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 7.0E+02 4.0E+00 mgAg No ND ND <0.00413 <0.00391 <0.00439 <0.00439 <0.00432 <0.00448 <0.00446 <0.00456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CD00545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101000                                                                                                                                                                                                                                                                 | +                                                                                                                                                                                                                                                                                     | +                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |
| 4.3E+00 5.8E-02 mg/kg No ND ND <0.00413 <0.00391 <0.00449 <0.00433 <0.00448 <0.00448 <0.00456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2000542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50,00464                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                     | +                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |
| 2.1E-01 7.3E-02 mg/kg No ND <0.00413 <0.00439 <0.00449 <0.00433 <0.00432 <0.00438 <0.00437 <0.00448 <0.00458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.00463                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                     | +                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |
| 7.9E-01 1.3E-02 mg/kg No ND ND <0.0413 40.00391 40.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04413 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.004443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04443 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.04444 -0.044444444 -0.0 | 2400.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00463                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                     | +                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |
| 65.4 <0.00326 <0.00782 <0.00858 <0.00585 <0.00843 <0.00843 <0.00844 <0.00843 <0.00844 <0.00843 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.00844 <0.0084 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00463                                                                                                                                                                                                                                                               | <0.00444 <0.00466                                                                                                                                                                                                                                                                     | 166 <0.00446                                                                                | <0.00442 <0.00437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.00444 |

10

<u>Motors</u> Retrod = N4 stanplets were analyzed using EPA Method 8560. NSS - N6 Screening Standard Istark In USC RFLOAP Table 1. NSJ - Analyte not detected in any sample above the respective method detection fanits. NJA - Net analyzed for this constituent.

. I

1

1

÷.

i.

Page 1 of 1

1

"MUNDANA"

| 1       |                                                                                                                                                                                       |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ÷.,     |                                                                                                                                                                                       |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| le<br>B |                                                                                                                                                                                       | 2ž                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | B-6(16-<br>18)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | B-6(8-10)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | B-6(0-2) B                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | B-5(18-<br>20)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | B-5(16- 1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | B-5(0-2)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | B-4(16-                                                  | 1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100 |
|         |                                                                                                                                                                                       | B-4(2-4)                                                 | 0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100         0.0100         0.0100           0.0100         0.0100         0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | B-4(0-2)                                                 | ୍କୁ ଅନ୍ତର୍ଭ ଅନ୍ତର୍ଭ<br>ଅନ୍ତର୍ଭ ଅନ୍ତର୍ଭ ଅନ୍ତର୍ଭ<br>ଅନ୍ତର୍ଭ ଅନ୍ତର୍ଭ ଅନ୍ତର୍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | ø                                                                                                                                                                                     | B-3(16-<br>18)                                           | 0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -<br>-  | STIGATION<br>STIGATION<br>AND SCREENING STANDARDS FOR SOILS<br>TARET<br>OUSLAMA<br>IN APRIL 2007                                                                                      | B-3(2-4)                                                 | 0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330                                                                                                                                                                         |
|         | DARDS F                                                                                                                                                                               | B-3(0-2)                                                 | 0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.03300<br>0.033000<br>0.03300000000                                                                                                                                                                                                                                                   |
|         | IG STAN                                                                                                                                                                               | B-2(16-                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | TION<br>CREENIN<br>NA<br>RIL 2007                                                                                                                                                     | B-2(14-<br>16)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | TABLE 4<br>ISE II SITE INVESTIGATION<br>ISE II SITE INVESTIGATION<br>ISE II SITE INVESTIGATION<br>1217 LAUREL STREET<br>ITON ROUGE, LOUISIANA<br>ES COLLECTED IN APRIL 2007           | B-2(0-2)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | TABLE 4<br>I SITE INVE<br>FOR SVOA<br>FOR SVOA<br>I SUUGE, LO<br>I ROUGE, LO                                                                                                          | ) B-1(16-                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2       | TABLE 4<br>TABLE 4<br>PHASE II SITE INVESTIGATIOI<br>AL RESULTS FOR SVOJ AND SCR<br>BATOM ROUGE, LOUNSIAND<br>SAMPLES COLLECTED IN APRIL                                              | () B-1(6-8)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | YŤICAL F                                                                                                                                                                              | B-1(0-2)                                                 | 0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.0300<br>0.0300<br>0.0300<br>0.0300<br>0.0300<br>0.0300<br>0.0300<br>0.0300<br>0                                                                                                 |
|         | r of Anal                                                                                                                                                                             | Minimum<br>Detected<br>Concentration                     | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | TABLE 4<br>TABLE 4<br>PHASE II SITE INVESTIGATION<br>SUMMARY OF ÄNALYTICAL RESULTSPORTS VOD ÄND SGREI<br>1217 LAUREL STREET<br>BATOM ROUGE, LOUISIANA<br>SAMPLES COLLECTED IN APRIL 2 | Maximum<br>Detected<br>Concentration                     | 9<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                                       | Maximum<br>Detoct Exceeds<br>Limiting RECAP<br>Standard? | ୫୫୫୫<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ନାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନୁ<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନୁତାର<br>ଅନୁ<br>ଅନ୍ତାର<br>ଅନ୍ତାର<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁନାର<br>ଅନୁ<br>ଅନୁନାର<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନାନାର<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ<br>ଅନୁ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                                                                                                                                                       | Calts                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                       | soll_ssgw                                                | 2.2.2.4.00<br>0.0.2.1.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.0.00<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000<br>1.0.0000000                                                                                                                                                                                                                                                               |
| 2       |                                                                                                                                                                                       | Solt_SSI                                                 | 6.1E.400         6.1E.400           6.1E.400         6.1E.400           RSS         RSS           RSS         SE           RSS         SE           RSS         SE           RSS         SE           RSS         SE           RSS         SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                       | CAS                                                      | 165339         165339           1003254         1015254           1015254         1015254           1015254         1015254           1015254         1015254           1015254         1015254           1015254         1015254           1015254         1015254           1015254         1015254           1015254         1015254           1015254         101555           1015254         101555           101555         101555           101557         101555           101557         101555           101557         101555           101557         101557           101557         101557           101557         101557           101557         101557           101557         101557           101557         1015573           101557         1015573           1015573         1015573           1015573         1015573           1015573         1015573           1015573         1015573           1015573         1015573           1015573         1015573           1015573         1015573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                                                                                                                                                                       | Analyte                                                  | Anomethylenen         (58.33)         (16.40)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)         (2.86.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                       |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Page 1 of 1

ouse PUESA 14 & 17 da

**Wrojects/LDR** 

|           |             |            |           |          |                                                                |                                                       | т.<br>т.,<br>р                       |                | <b>ω</b> .     | AMPLES C           | COLLECT        | BATON ROUGE, LOUISIANA<br>SAMPLES COLLECTED IN APRIL 2007 | A<br>L 2007         | 10 A<br>1      | :              | 1211 LÄÜREL STREET<br>BATON ROUGE, LOUISIANA<br>SAMPLES COLLECTED IN ÄPRIL 2007 |                | 10             | 1)<br>54         |                |                  | 28<br>2003       |                | 2<br>19         |                  |
|-----------|-------------|------------|-----------|----------|----------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|----------------|----------------|--------------------|----------------|-----------------------------------------------------------|---------------------|----------------|----------------|---------------------------------------------------------------------------------|----------------|----------------|------------------|----------------|------------------|------------------|----------------|-----------------|------------------|
| Analýto   | CAS         | -soir_ssi- | soit_sst- | Units    | Maximum<br>Detect<br>Exceeds<br>Limiting<br>RECAP<br>Standard? | Maximum Minimum<br>Detected Detected<br>Concentration | Minimum<br>Detected<br>Concentration | B-1 S<br>(0-2) | B-1 S<br>(6-8) | .B.1 S.<br>(16-18) | B-2 S<br>(0-2) | 'B-2'S<br>(14-16)                                         | -B-2 S .<br>(16-18) | 8-3 S<br>(0-2) | B-3 S<br>(2-4) | .B.3 S<br>(16-18)                                                               | B-4 S<br>(0-2) | B-4 S<br>(2-4) | B.4 S<br>(16-18) | B-5 S<br>(0-2) | B-5 S<br>(16-18) | B-5 S<br>(18-20) | B-6 S<br>(0-2) | B-6 S<br>(8-10) | B-6:S<br>(16-18) |
| Aluminum  | 7429-90-5   | NSS        | NSS       | phylom   | NSS                                                            | 11,800                                                | 4,280                                | 7,500          | 9.540          | 6.540              | 6,800          | 8.420                                                     | 11,200              | 4.280          | 4.800          | 11.600                                                                          | 5 760          | 7 720          | 7 160            | 7 160          | 11 800           | 11 300           | 7 100          | C 160           | 002.01           |
| Antimony  | 7440-36-0   | 8.2E+01    | 1.2E+01   | mg/kg    | _                                                              | QN                                                    | QN                                   | <5.36          | <6.00          | <5.77              | <5.66          | <5:17                                                     | <6.00               | <5.56          | <5.66          | <5.26                                                                           | - 11.52        | ~200           | 26.66            | 1,100          | 11,000           | 11,000           | +              | ┢               | 00/10            |
| Arsenic   | 7440-38-2   | 1.2E+01    | 1.0E+02   | бубш     | -                                                              | 6.67                                                  | 1.37                                 | <0.893         | 4.04           | 1.37               | 2.31           | <0.862                                                    | 3.50                | <0.926         | 4.31           | 6.67                                                                            | <0.962         | 1.51           | 1.59             | <0.98          | 1.55             | +                | +              | <0.962          | 1.42             |
| Rendlium  | 7440-09-0   | 1.45+04    | 2.0E+03   | Byrbu    | +                                                              | 1,080                                                 | 48.8                                 | 153            | 48.8           | 113                | 99.5           | 97.3                                                      | 129                 | 72.0           | 162            | 11                                                                              | 249            | 1,080.0        | 73               | 81             | 165.0            | ŀ                | +              | <19.2           | 288              |
| Cadmium   | 1-1-0-0-0-1 | 4.01-00    | 0.0E+00   | Bydgu    | 1                                                              | 2.580                                                 | 0.500                                | 0.60           | 2.580          | 0.511              | 0.500          | 0.656                                                     | 0.957 -             | <0.463         | <0.472         | 1.160                                                                           | 0.56           | 0.881          | 0.821            | 0.631          | 1.000            | 1.060            | 0.639          | 1.210           | 0.925            |
| Calcium   | 7440-70.2   | Nec Nec    | Z.UE+UT   | Byrbu    | +                                                              | 0.995                                                 | 0.773                                | <0,446         | <0.50          | <0.481             | <0.472         | <0.431                                                    | <0.50               | <0.463         | <0.472         | <0.439                                                                          | 0.77           | <0.417         | <0.463           | <0.49          | 0.995            |                  | -              | +               | <0.481           |
| Chromium  | 740.47.3    | R 1E400    | 1 DE LOS  | Barba    | -                                                              | 5,530                                                 | 1,380                                | 5,530          | 2,980          | 2,560              | 2,710          | 2,690                                                     | 4,070               | 4.060          | 2,700          | 5,530                                                                           | 1,960          | 2,620          | 2,390            | 1,380          | 4,690            | +                | -              | ┝               | 3.910            |
| Cohatt    | 7440-48-4   | 1 26+04    | A ACADO   | enone    | No                                                             | 17.10                                                 | 4.21                                 | 9.51           | 9.19           | .8.93              | 12:10          | 9.13                                                      | 11.90               | 6.35           | 14.40          | 12.30                                                                           | 17.10          | 6.01           | 8.17             | 7.61           | 13.60            | 13.00            | 8.37           | 4.21            | 12.30            |
| Copper    | 7440-50-8   | 8.2E+03    | 1.5E+03   | Ruffun   |                                                                | 01.61                                                 | 3.32                                 | 06.0           | 10.80          | 4.52               | 3.51           | - 5.16                                                    | 7.47                | 5.40           | 3.32           | 7.53                                                                            | 3.75           | 12.10          | 10.40            | 6.53           | 6.56             | 8.00             | 8.06           | 3.39            | 15.10            |
| Iron      | 7439-89-6   | NSS        | SSN       | Dafter a | -                                                              | 23.400                                                | BA'S                                 | 13.80          | 9.48           | 8.80               | 9.79           | 9.40                                                      | 17.40               | 6.72           | 15.70          | 19.40                                                                           | 90.90          | 4.32           | 9.68             | 10.80          |                  | -                | 10.30          | 3.99            | 18.00            |
| Lead      | 7439-92-1   | 1.4E+03    | 1.0E+02   | Da/ban   | +                                                              | 004'00                                                | 4 00                                 | 12,300         | 10,200         | 13,600             | 12,100         | 10,600                                                    | 17,700              | 8,600          | 33,400         | 21,900                                                                          | 22,600         | 10,100         | 9,230            | 12,900         | -                | -                | 13,700         | 4,340           | 17,500           |
| Magnesium | 7439-95-4   | NSS        | NSS       | ma/ka    | NSS                                                            | 4240                                                  | 112                                  | 00.0F          | 14.60          | 057 +              | 01.12          | 13.60                                                     | 13.80               | 16.50          | 28.70          | 22.10                                                                           | 439.0          | 16.90          | 19.20            | 12.60          | 10.90            | 13.00            | 8.22           | 4.90            | 12.70            |
| Manganese | 7439-96-5   | NSS        | NSS       | mg/kg    |                                                                | 1.070                                                 | 12                                   | 462            | 303            | 100                | 113            | 245                                                       | 06/2                | 2,90U          | 0.97'L         | 3,970                                                                           | E              | 1,630          | 1,640            | 1.300          | 4,240            | 4,040            | 1,740          | 1,320           | 3,880            |
| Mercury   | 7439-97-6   | 6.1E+01    | 4.0E+00   | mg/kg    |                                                                | 3.45                                                  | 0.021                                | 0.0619         | <0.0182        | 0.0323             | 80000          | VUDEA                                                     | 10104               | 10/            | 017            | 2/11                                                                            | 111            | 114            | 334              | 328            | +                | +                | +              | +               | 1,070            |
| Nickel    | 7440-02-0   | 4.1E+03    | 1.5E+03   | BWgm .   |                                                                | 25.7                                                  | 5.9                                  | 11.6           | 26.1           | .73                | 5.0            | 100                                                       | 0 41                | 1070.0         | 2120.0         | 0.0213                                                                          | 3.4500         | ×0.0188        | 0.0569           | 0.0297         | 1                | -                | +              | -               | <0.0171          |
| Potassium | 9/7/7440    | NSS        | NSS       | BA/6m    |                                                                | 1.620                                                 | 468                                  | 548            | <500           | C481               | 6470           | 778                                                       | 000 +               | 100            | 0.1            | 0.02                                                                            | 9.10           | 1.1            | 1.01             | 8.01           | 19.8             | 19.1             | 14.0           | 6.0             | 25.7             |
| Selenium  | 7782-49-2   | 1,0E+03    | 2.0E+01   | mg/kg    | No                                                             | QN                                                    | QN                                   | 3.12           | 09122          | <3.37              | <3 20          | C3 00                                                     | 23 60               | 100            | OC CT          | 20 51                                                                           | ION            | 1142           | 400              | 683.00         | 1,620            | 1,420            | 829            | <481            | 1,190            |
| Silver    | 7440-22-4   | 1.0E+03    | 1.0E+02   | mg/kg    |                                                                | QN                                                    | QN                                   | <0.893         | <1.00          | 296.U>             | <0 943         | CN8.0>                                                    | <1 00-              | 20.026         | 0000           | 10.07                                                                           | 10.00          | 26.22          | 43.64            | <3.43          | <3.43            | <3.43            | +              | +               | 43.37            |
| Sodium    | 7440-23-5   | NSS        | NSS       | Буубш    | NSS                                                            | QN                                                    | QN                                   | <446           | <500           | <481               | <472           | 431                                                       | <500                | C463           | CT42           | 110.0                                                                           | 1905           | 50.033         | 076.05           | <0.98          | <0.98<br>-100    | <0.98            | +              | +               | <0.962           |
| Thallium  | 7440-28-0   | -          | 4.0E+00   | mg/kg    | No ·                                                           | QN                                                    | QN                                   | <0.893         | <1.00          | <0.962             | <0.943         | <0.862                                                    | <1.00               | <0.926         | <0.943         | <0.877                                                                          | CU GR2         | CD 833         | 2000             | 10.00          | 000              | 20.00            | 0 800          | 1942            | 1842             |
| Vanadium  | 7440-62-2   | +          | 5.2E+02   | 6x/6w    | No                                                             | 39.4                                                  | 6.7                                  | 18.2           | 31.0           | 18.1               | 22.1           | 14.1                                                      | 23.0                | 12.2           | 39.4           | 32.1                                                                            | 21.4           | 16.9           | 15.9             | 18.5           | 26.6             | +                | +              | +               | 206.0            |
| 2410      | 0-00-04-61  | 0.12+04    | Z.8E+U3   | By/Bul   | _                                                              | 142.0                                                 | 12.3                                 | 52.4           | 29.9.          | 27.1               | 44.1           | 32.0                                                      | 52.4                | 40.5           | 39.6           | 55.4                                                                            | 142.0          | 20.3           | 33.0             | 35.5           | 57.R             | 57.6             | 31.6           | 12.3            | 4 44             |

Not

NSS - No Screening Standard Isted in LDEC RECAP 1 able 1. ND - Analytic not detection in Standard Isted in LDEC RECAP 1 able 1. ND - Analytic not detection in any sample above the respective method detection fimile.

Page 1 of 1

PREA, IS A TEAM

-)

ł

**TABLE 6** 

# PHASE II SITE INVESTIGATION SUMMARY OF ANALYTICAL RESULTS FOR VOA AND SCREENING STANDARDS FOR GROUNDWATER 1217 LAUREL STREET BATON ROUGE, LOUISIANA SAMPLES COLLECTED IN APRIL 2007

| 2                                                              | <u> </u> | 2         |           | ي<br>ارد             | 2         | 2            | ي<br>اي    | 2<br>S           | S<br>S | 20      | 55        | S.        | 8       | 5          | SI.                 | <u>_</u>                   | 8        | 65                | 3        | 55                 | 3           | ъ<br>S                   |             | 2          | 3                  | 2                    | s        | 3                         | S<br>S            | 3        | 3                     | 05                    | ß               | 22            |                |
|----------------------------------------------------------------|----------|-----------|-----------|----------------------|-----------|--------------|------------|------------------|--------|---------|-----------|-----------|---------|------------|---------------------|----------------------------|----------|-------------------|----------|--------------------|-------------|--------------------------|-------------|------------|--------------------|----------------------|----------|---------------------------|-------------------|----------|-----------------------|-----------------------|-----------------|---------------|----------------|
| B 6 W                                                          | 0.0957   | <0.005    | <0.05     | <0.005               | <0.005    | <0.010       | <0.005     | <0.005           | <0.005 | <0.005  | ×0.005    | <0.005    | <0.005  | ¥0.055     | <0.005              | <0.010                     | <0.005   | <0.005            | <00.005  | <0.005             | <0.005      | <0.005                   | <0.005      | 010.02     |                    | 010.010              |          | <0.005                    | <0.005            | <00.0>   | <0.005                | <0.005                | <0.005          | <0.005        | <0.010         |
| 8-4 W                                                          | <0.010   | <0.005    | <0.005    | <0.005               | <0.005    | <0.010       | <0.005     | <0.005           | <0.005 | <0.005  | <0.005    | <0.005    | <0.005  | I : <0.005 | <0.005              | <0.010                     | < <0:005 | <0.005            | <0.005   | <0.005             | <0.005      | _0.00613                 | <0.005      | <0.010     | <00.05             | <0.010               | <0.005   | <0.005                    | <0.005            | <0.005   | <0.005                | <0.005                | <0.005          | <0.005        | 0.0526         |
| B-3 W                                                          | <0.010   | <0.005    | <0.005    | <0.005               | <0.005    | <0.010       | <0.005     | <0.005           | <0.005 | <0.005  | <0.005    | <0.005    | <0.005  | <0.005     | <0.005              | <0.010                     | <0,005   | <0.005            | <0.005   | <0.005             | <0.005      | <0.005                   | <0.005      | <0.010     | <0.005             | <0.010               | <0.005   | <0.005                    | <0.005            | <0.005   | <0.005                | <0.005                | <0.005          | <0.005        | <0.010         |
| B-2 W                                                          | <0.010   | <0.005    | <0.005    | <0.005               | <0.005    | <0.010       | <0.005     | <0.005           | <0.005 | <0.005  | <0.005    | <0.005    | <0.005  | <0.005     | <0.005              | <0.010                     | <0.005   | <0.005            | <0.005   | <0.005             | <0.005      | <0.005                   | <0.005      | <0.010     | <0.005             | <0.010               | <0.005   | <0.005                    | <0.005            | <0.005   | <0.005                | <0.005                | <0.005          | <0.005        | <0.010         |
| B-1 W                                                          | <0.010   | <0.005    | <0.005    | <0.005               | <0.005    | <0.010       | <0.005     | <0.005           | <0.005 | <0.005  | <0.005    | <0.005    | <0.005  | <0.005     | <0.005              | <0.010                     | <0.005   | <0.005            | <0.005   | <0.005             | <0.005      | <0.005                   | <0.005      | <0.010     | <0.005             | <0.010               | <0.005   | <0.005                    | <0.005            | <0.005   | <0.005                | <0.005                | <0.005          | <0.005        | <0.010         |
| Minimum<br>Detected<br>Concentration                           | 0.0957   | QN        | QN        | Q                    | QN        | QN           | Q          | QN               | Q      | QN      | QN        | QN        | QN      | QN         | QN                  | Q                          | QN       | QN                | QN ×     | DN                 | QN          | 0.00613                  | QN          | QN         | Q                  | Q                    | QN       | QN                        | QN                | DN       | QN                    | QN                    | QN              | QN            | 0.0526         |
| Maximum<br>Detected<br>Concentration                           | 0.0957   | Q         | QN        | QN                   | CN        | GN           | QN         | Q                | QN     | QN      | Q         | QN        | QN      | QN         | QN                  | QN                         | ON       | QN                | QN       | QN                 | QN          | 0.00613                  | DN 1        | QN         | QN                 | QN                   | QN       | QN                        | QN                | QN       | QN                    | QN                    | QN              | QX            | 0.0526         |
| Maximum<br>Detect<br>Exceeds<br>LImiting<br>RECAP<br>Standard? | QN       | QN        | NO.       | ON ON                | C N       | C V          | 2 V        | No               | No     | CN N    | No        | QN        | QN      | SN S       | e<br>N              | Q                          | Q        | Ŷ                 | No       | No                 | No          | Yes                      | No          | No         | No                 | No                   | Ŷ        | °N<br>N                   | No                | Ŷ        | Ň                     | Ŷ                     | No              | 9N<br>N       | No             |
| Units                                                          | l'om     | 1,500     | 1         | 1/04                 | light     | T/DIL        | 1,000      | - Hou            | - Form | 1,000   | lion      | 1/000     | 1/000   | 1/000      | mart                | ma/L                       | - ma/l   | ma/L              | ma/1     | ma/L               | mall        | mo/L                     | mg/L        | mg/L       | mg/L               | mg/L                 | ma/L     | ma/L                      | ma/L              | ma/L     | ma/L                  | T/om                  | ma/L            | ma/L          | m9/L           |
| RECAP<br>GW_SS                                                 | 1 05 01  | 5 0 5 0 5 |           |                      |           |              | 1.85-01    | 5 0E-03          | 105-01 | 1 00.00 | 1 05-01   | 1000      | 105-01  | 8 1E-02    | 5.0E-03             | 1 05-01                    | 8 1F-03  | 7 0F-02           | 105.01   | 5 0F-03            | 5 0E-03     | 5.0E-03                  | 7.0E-01     | NSS        | 5.0E-03            | 2.0E-01              | 1.0E-01  | 5 0F-04                   | 5.0E-03           | 1.0E+00  | 2.0E-01               | 5 0F+03               | 5 0F-03         | 2.0E-03       | 1.0E+01        |
| - C C                                                          | 1 01 0   | 0/-04     | 7-01-1-   | 4-17-C1              | 7-07-0/   | 14-83-8      | 15-83-3    | 2 2 2 2          |        | 1-00-32 | 67.68.3   | 0.00-10   | 104 401 | 1-01-12    | 107-08-2            | 540-59-0                   | 75 25 4  | 158.50.7          | 150 00 E | 78-87-5            | 10.041.01.5 | 10061-02-8               | 100-41-4    | 591-78-6   | 75-09-2            | 108-10-1             | 100-42-5 | 70.34-5                   | 127.18-4          | 108-88-3 | 71-55-8               | 200-5                 | 79-01-6         | 75-01-4       | 1330-20-7      |
| Analyte                                                        |          | Acelorie  | Alfazilag | Bromodicniorometnane | Bromotorm | Bromomethane | Z-Butanone | Carbon disultide |        |         | Chlorotom | CHIOCOURT |         |            | 1, 1-Dictionentarie | 4:2 Dishlorosthand (Total) |          | 1, 1-UGROUGHIELIE |          | 1 2 Dichlococococo |             | trans 1 3-Dichlomorphene | Enviperzene | 2-Hexanone | Methylene chloride | 4-Methyl-2-pentanone | Styrene  | 1 1 2 2 Tetrachlaroethane | Totrachloroethene | Tolitana | 4 4 4 Trichloroethane | 4 1 2 Trichtoroathana | Trichloroathana | Vinul ablaide | Xylene (total) |

Notes: Method = All samples were analyzed using EPA Method 8260. NSS - No Screening Standard listed in LDEQ RECAP Table 1. ND - Analyte not detected in any sample above the respective method detection limits. N/A - Not analyzed for this constituent. No water sample was collected from temporary well B-5. Water was not present in the borehole.

rt/ProjectatLDEC(1) \$228029-018rien House Propl\_MPP00001108rien House\_PttE8A\_113 & 18.tde

Page 1 of 1

### TABLE 7

### PHASE II SITE INVESTIGATION SUMMARY OF ANALYTICAL RESULTS FOR SVOA AND SCREENING STANDARDS FOR SOILS 1217 LAUREL STREET BATON ROUGE, LOUISIANA SAMPLES COLLECTED IN APRIL 2007

| Analyte                                    | CAS                   | GW_SSI         | Units        | Maximum<br>Detect<br>Exceeds<br>Limiting<br>RECAP<br>Standard? | –<br>Maximum<br>Detected<br>Concentration | Minimum<br>Detected<br>Concentration | B-1 W          | B-2 W          | B-3 W          | B-4 W                    | B-6 W                    |
|--------------------------------------------|-----------------------|----------------|--------------|----------------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------|----------------|----------------|--------------------------|--------------------------|
| Acenaphthene                               | 83-32-9               | 0.0365         | mg/L         | No                                                             | 0.026                                     | 0.026                                | <0.01          | <0.01          | <0.01          | 0.0258                   | <0.01                    |
| Acenaphthylene                             | 208-96-8              | 0,100          | mg/L         | No                                                             | 0.011                                     | 0.011                                | <0.01          | <0.01          | <0.01          | 0.0107                   | <0.01                    |
| Acetophenone                               | 98-86-2               | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Anthracene                                 | 120-12-7              | 0.043          | mg/L         | No                                                             | 0.019                                     | 0,019                                | <0.01          | <0.01          | <0.01          | 0.019                    | <0.01                    |
| Atrazine (Aatrex)                          | 1912-24-9             | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Benzaldehyde                               | 100-52-7<br>56-55-3   | 0.008          | mg/L<br>mg/L | NSS<br>No                                                      | ND<br>ND                                  | ND<br>ND                             | <0.01<br><0.01 | <0.01<br><0.01 | <0.01<br><0.01 | <0.01<br><0.01           | <0.01<br><0.01           |
| Benzo(a)anthracene<br>Benzo(b)fluoranthene | 205-99-2              | 0.005          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Benzo(k)fluoranthene                       | 207-08-9              | 0.003          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Benzo(g.h.i)perylene                       | 191-24-2              | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Benzo(a)pyrene                             | 50-32-8               | 0.00020        | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Biphenyl                                   | 92-52-4               | 0.030          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 4-Bromophenyl phenyl ether                 | 101-55-3              | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Butyt benzyl phthatate                     | 85-68-7<br>105-60-2   | 0.73<br>NSS    | mg/L         | No<br>NSS                                                      | ND<br>ND                                  | ND<br>ND                             | <0.01          | <0.01          | <0.01          | <u>&lt;0.01</u><br><0.01 | <0.01<br><0.01           |
| Caprotactam<br>Carbazole                   | 86-74-8               | NSS            | mg/L<br>mg/L | NSS                                                            | 0.043                                     | 0.043                                | <0.01          | <0.01          | <0.01          | 0.043                    | <0.01                    |
| 4-Chloro-3-methylphenol                    | 59-50-7               | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 4-Chloroaniline                            | 106-47-8              | 0.020          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Bis(2-Chloroethoxy)methane                 | 111-91-1              | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Bis(2-Chloroethyl)ether                    | 111-44-4              | 0,006          | mg/L         | No                                                             | ND                                        | DN                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0,01                    |
| 2-Chloronaphthalene                        | 91-58-7               | 0.049          | mg/L_        | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0,01          | <0.01                    | <0.01                    |
| 2-Chlorophenol                             | 95-57-8               | 0.010          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 4-Chlorophenyt phenyl ether                | 7005-72-3<br>218-01-9 | 0.0016         | mg/L<br>mg/L | NS\$<br>No                                                     | ND ND                                     | ND<br>ND                             | <0.01          | <0.01          | <0.01          | <0.01<br><0.01           | <0.01<br><0.01           |
| Dibenz(a,h)anthracene                      | 53-70-3               | 0.0025         | mg/L         | No                                                             | ND ND                                     | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Dibenzofuran                               | 132-64-9              | 0.0100         | mg/L         | Yes                                                            | 0.046                                     | 0.046                                | <0.01          | <0.01          | <0.01          | 0,046                    | <0.01                    |
| 3,3'-Dichlorobenzidine                     | 91-94-1               | 0.0200         | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 2,4-Dichlorophenol                         | 120-83-2              | 0.0110         | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Diethyt phthalate                          | 84-66-2               | 2.92           | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 2,4-Dimethylphenol<br>Dimethyl phthalate   | 105-67-9              | 0.073<br>36,50 |              | No<br>No                                                       | ND<br>ND                                  |                                      | <0.01          | <0.01          | <0.01<br><0.01 | <0.01<br><0.01           | <0.01<br><0.01           |
| Di-n-butyl phthalate                       | 84-74-2               | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | < 0.01                   |
| 4,6-Dinitro-2-methylphenol                 | 534-52-1              | NSS            | mg/L.        | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 2.4-Dinitrophenol                          | 51-28-5               | 0,050          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 2,4-Dinitrotoluene                         | _121-14-2_            | 0,010          | mg/L_        | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 2.6-Dinitrotoluene                         | 606-20-2              | 0.010          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Di-n-octyl phthalate                       | 117-84-0              | 0.020          | mg/L_        | No No                                                          | ND ND                                     | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Bis(2-Ethythexyl)phthalate<br>Fluoranthene | 117-81-7              | 0.006          | mg/L<br>mg/L | No<br>No                                                       | 0.033                                     | 0.033                                | <0.01          | <0.01          | <0.01          | <0.01 0.033              | <0.01<br><0.01           |
| Fluorene                                   | 86-73-7               | 0.024          | mg/L         | Yes                                                            | 0.050                                     | 0.050                                | <0.01          | <0.01          | <0.01          | 0.0498                   | <0.01                    |
| Hexachtoro-1,3-butadiene                   | 87-68-3               | 0.0007         | mg/L         | No                                                             | ND                                        | ND                                   | <0,01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Hexachlorobenzene                          | 118-74-1              | 0.0010         | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Hexachlorocyclopentadiene                  | 77-47-4               | 0.050          | mg/L_        | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Heixachtoroethane                          | 67-72-1               | 0.010          | mg/L         | No No                                                          | ND                                        | ND ND                                | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Indeno(1,2,3-cd)pyrene<br>Isophorone       | 193-39-5              | 0.0037         | mg/L<br>mg/L | No<br>No                                                       | ND<br>ND                                  | ND<br>ND                             | <0.01          | <0.01          | <0.01<br><0.01 | <0.01<br><0.01           | <0.01<br><0.01           |
| 2-Methylnaphthalene                        | 91-57-6               | 0.0699         | mg/L<br>mg/L | No<br>No                                                       | 0,038                                     | 0.038                                | <0.01          | <0.01          | <0.01          | 0.038                    | <u>&lt;0.01</u><br><0.01 |
| 2-Methylphenol (o-Cresol)                  | 95-48-7               | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 2-Methylphenol (p-Cresol)                  | 106-44-5              | NSS            | mg/L         | NSS                                                            | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Naphthalene                                | 91-20-3               | 0,010          | mg/t_        | Yes                                                            | 0.381                                     | 0.028                                | <0.01          | <0.01          | 0.028          | 0.381                    | <0.01                    |
| 2-Nitroaniline                             | 88-74-4               | 0.050          | mg/L_        | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 3-Nitroanillne                             | 99-09-2               | 0.050          | mg/L         | No No                                                          | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 4-Nitroaniline<br>Nitrobenzene             | 100-01-6<br>98-95-3   | 0.050          | mg/L<br>mg/L | No<br>No                                                       | ND<br>ND                                  | ND<br>ND                             | <0.01          | <0.01          | <0.01          | <0.01<br><0.01           | <0.01<br><0.01           |
| 2-Nitrophenol                              | 88-75-5               | NSS            | mg/L         | NSS                                                            | ND ND                                     | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 4-Nitrophenol                              | 100-02-7              | 0,050          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| n-Nitrosodi-n-propylamine                  | 621-64-7              | 0.010          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| n-Nitrosodiphenylamine                     | 86-30-6               | 0.014          | mg/L         | No                                                             | ND                                        | ND                                   | <0,01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 2.2 Oxybis(1-chloropropane)                | 108-60-1              | 0.006          | mg/l.        | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Pentachlorophenol                          | 87-86-5               | 0.001          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| Phenanthrene                               | 85-01-8               | 0.183          | mg/L_        | No No                                                          | 0.096                                     | 0.096                                | <0.01          | <0.01          | <0.01          | 0.096                    | <0.01                    |
| Phenol Pyrene                              | 108-95-2<br>129-00-0  | 0.183          | mg/L<br>mg/L | No<br>Yes                                                      | 0.024                                     | 0.024                                | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01<br><0,01           |
| 2,4,5-Trichlorophenol                      | 95-95-4               | 0,365          | mg/L         | No                                                             | ND                                        | ND                                   | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |
| 2,4,6-Trichlorophenol                      | 88-06-2               | 0.010          | mg/L         | No                                                             | ND                                        | _ND                                  | <0.01          | <0.01          | <0.01          | <0.01                    | <0.01                    |

### Notes:

Method # EPA 8270

+

-

NSS - No Screening Standard listed in LDEQ RECAP Table 1. ND - Analyte not detected in any sample above the respective method detection limits.

No water sample was collected from temporary well B-5. Water was not present in the borehole.

**TABLE 8** 

## SUMMARY OF ANALYTICAL RESULTS FOR METALS AND SCREENING STANDARDS FOR GROUNDWATER 1217 LAUREL STREET PHASE II SITE INVESTIGATION BATON ROUGE, LOUISIANA

SAMPLES COLLECTED IN APRIL 2007

|           |           |         |       | Maximum                                |                                      |                                      |         |         | ·       |         |         |
|-----------|-----------|---------|-------|----------------------------------------|--------------------------------------|--------------------------------------|---------|---------|---------|---------|---------|
| Analyte   | CAS       | GW_SS   | Units | Detect<br>Exceeds<br>Limiting<br>RECAP | Maximum<br>Detected<br>Concentration | Minimum<br>Detected<br>Concentration | B-1 W   | B-2 W   | B-3 W   | B-4 W   | B-6 W   |
|           |           |         |       | Standard?                              | ,                                    | 0.010                                | 04.0    | 0.20    | 0.25    | <0.2    | 0.21    |
| Aluminum  | 7429-90-5 | NSS     | mg/L  | NSS                                    | 2.4                                  | 0.213                                | 7.40    | 5       | 27.2    | 4.01    |         |
| Antimony  | 7440-36-0 | 6.0E-03 | mg/L  | QN                                     | QN                                   | QN                                   | <0.06   | <0.06   | <0.06   | <0.06   | <0.06   |
| Arsenic   | 7440-38-2 | 1.0E-02 | mg/L  | QN                                     | QN                                   | QN                                   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
| Barium    | 7440-39-3 | 2.0E+00 | mg/L  | ٩N                                     | QN                                   | QN                                   | <0.2    | <0.2    | <0.2    | <0.2    | <0.2    |
| Bervilium | 7440-41-7 | 4.0E-03 | mg/L  | ٥N                                     | QN                                   | QN                                   | <0.005  | <0.005  | <0.005  | <0.005  | <0.005  |
| Cadmium   | 7440-43-9 | 5.0E-03 | mg/L  | No                                     | QN                                   | QN                                   | <0.005  | <0.005  | <0.005  | <0.005  | <0.005  |
| Calcium   | 7440-70-2 | NSS     | mg/L  | NSS                                    | 152                                  | 47.9                                 | 109.0   | 152.0   | 90.7    | 58.7    | 47.9    |
| Chromium  | 7440-47-3 | 1.0E-01 | ma/L  | QN                                     | Q                                    | QN                                   | <0.01   | <0.01   | <0.01   | <0.10   | <0.01   |
| Cobalt    | 7440-48-4 | 2'2E-01 | mg/L  | ٩                                      | QN                                   | QN                                   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
| Copper    | 7440-50-8 | 1.3E+00 | mg/L  | ٩N                                     | 0.0135                               | 0.0135                               | <0.01   | <0.01   | <0.01   | <0.01   | 0.014   |
| Iron      | 7439-89-6 | NSS     | mg/L  | NSS                                    | 11                                   | 1.43                                 | 2.50    | <0.10   | 11.00   | 1.43    | <0.1    |
| Lead      | 7439-92-1 | 1.5E-02 | mg/L  | ٥N                                     | 0.00967                              | 0.00669                              | 0.00967 | <0.005  | <0.005  | <0.005  | 0.00669 |
| Magnesium | 7439-95-4 | NSS     | mg/L  | NSS                                    | 57.9                                 | 12.7                                 | 32.10   | 57.90   | 13.60   | 12.70   | 17.80   |
| Manganese | 7439-96-5 | NSS     | mg/L  | NSS                                    | 3.74                                 | 0.113                                | 0.922   | 0.418   | 3.740   | 3.120   | 0.113   |
| Mercury   | 7439-97-6 | 2.0E-03 | mg/L  | No                                     | Q                                    | QN                                   | <0.0002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 |
| Nickel    | 7440-02-0 | 7.3E-02 | mg/L  | No                                     | GN                                   | DN                                   | <0.40   | <0.04   | <0.04   | <0.04   | <0.04   |
| Potassium | 9/7/7440  | NSS     | mg/L  | NSS                                    | QN                                   | QN                                   | <5.0    | <5.0    | <5.0    | <5.0    | <5.0    |
| Selenium  | 7782-49-2 | 5.0E-02 | mg/L  | ٥N                                     | Q                                    | QN                                   | <0.035  | <0.035  | <0.035  | <0.035  | <0.035  |
| Silver    | 7440-22-4 | 1.8E-02 | mg/L  | No                                     | QN                                   | QN                                   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
| Sodium    | 7440-23-5 | NSS     | mg/L  | NSS                                    | 117.0                                | 68.0                                 | 86.9    | 117.0   | 90.2    | 68.0    | . 93.2  |
| Thallium  | 7440-28-0 | 2.0E-03 | mg/L  | No                                     | QN                                   | DN                                   | <0.01   | <0.01   | <0.10   | <0.01   | <0.01   |
| Vanadium  | 7440-62-2 | 2.6E-02 | mg/L  | No                                     | Q                                    | QN                                   | <0.05   | <0.05   | <0.50   | <0.05   | <0.05   |
| Zinc      | 7440-66-6 | 1 15+00 | l/um  | CN                                     | 0.033                                | 0.0208                               | 0.021   | <0.02   | <.020   | 0.026   | 0.033   |

Notes:

Methods - All metals were analyzed using method SW-846 6010B, except mercury which was run using method SW-846 7471A NSS - No Screening Standard listed in LDEQ RECAP Table 1.

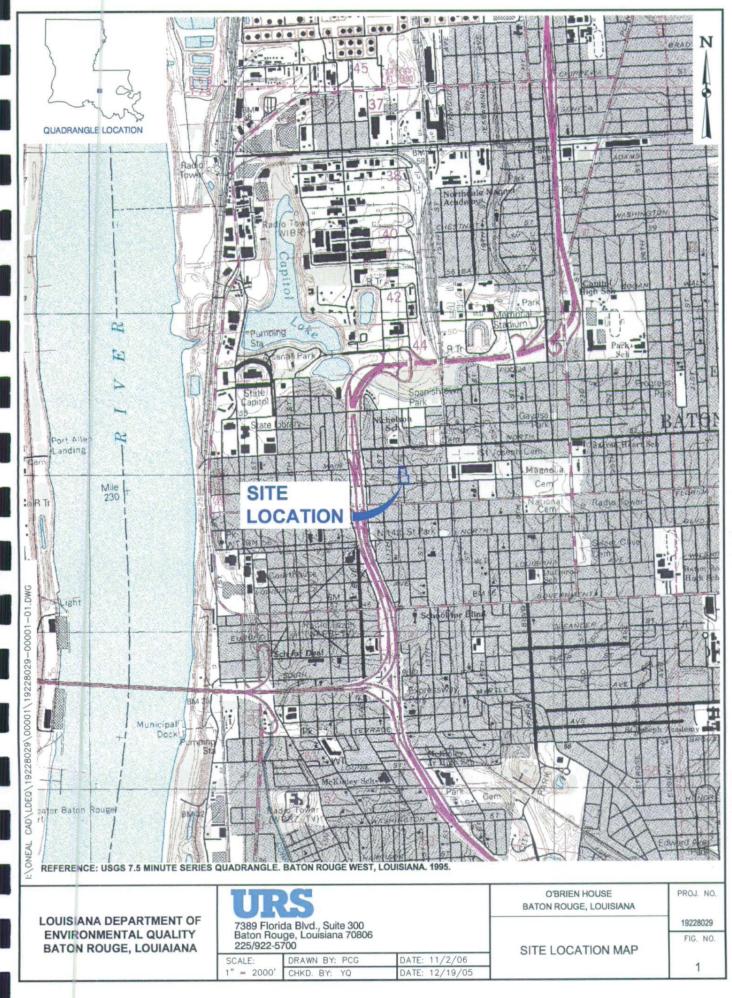
ND - Analyte not detected in any sample above the respective method detection limits.

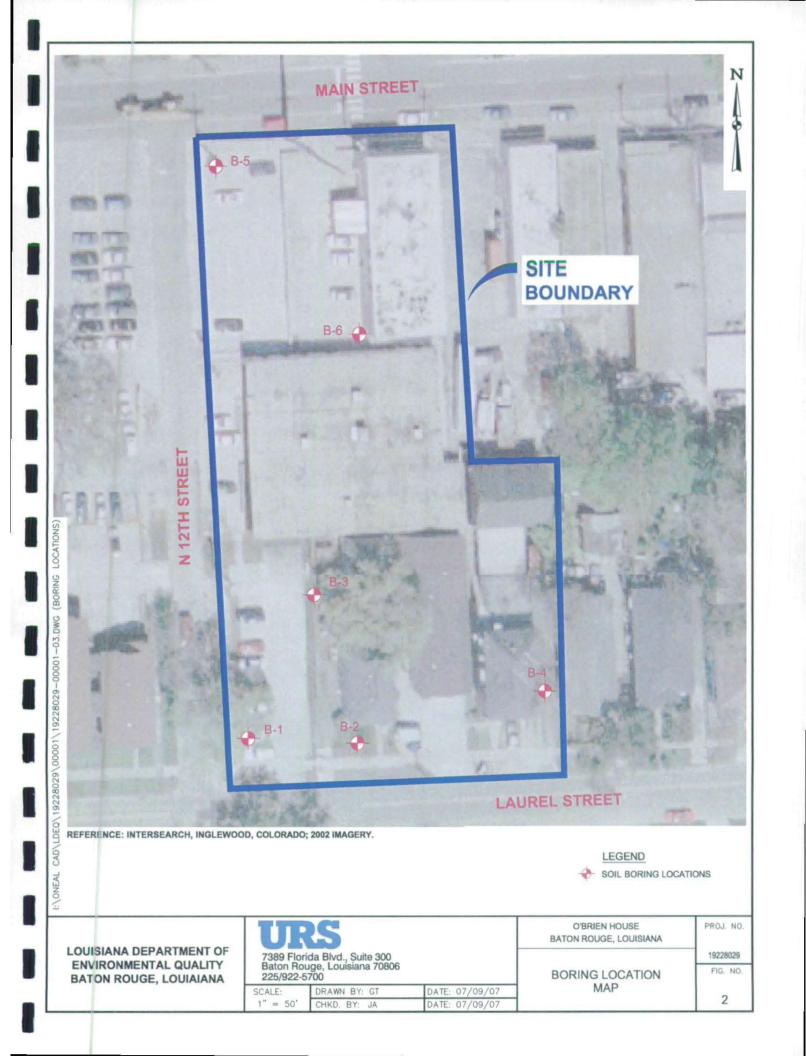
N/A - Not analyzed for this constituent.

No water sample was collected from temporary well B-5. Water was not present in the borehole.

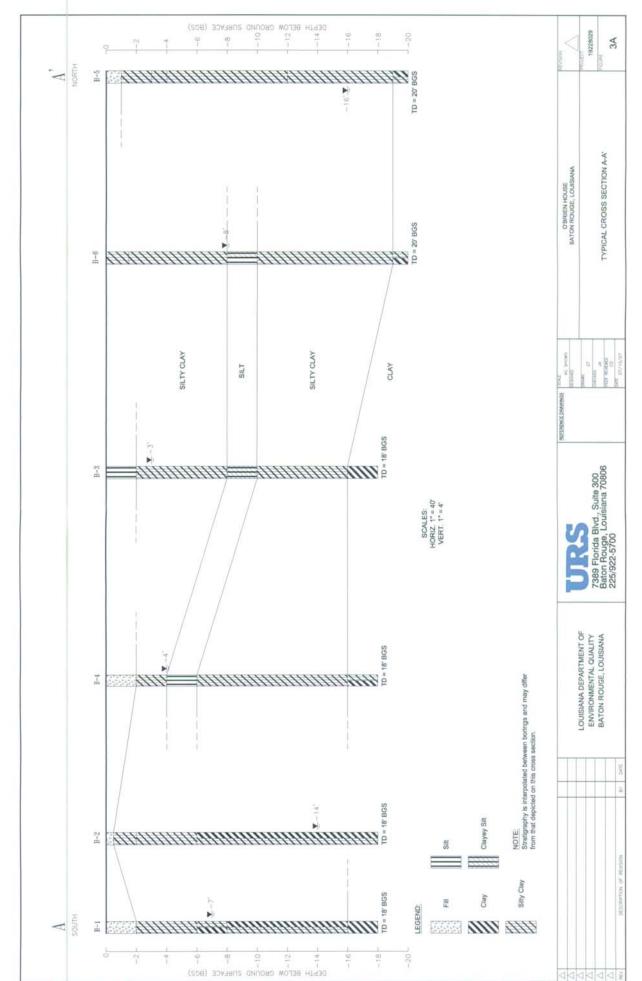
HOLDE, PEESA, TS & TUJDH Prop. WP000010Brier ErPinyectar DE Qui 9228029-078 men House

Page 1 of 1

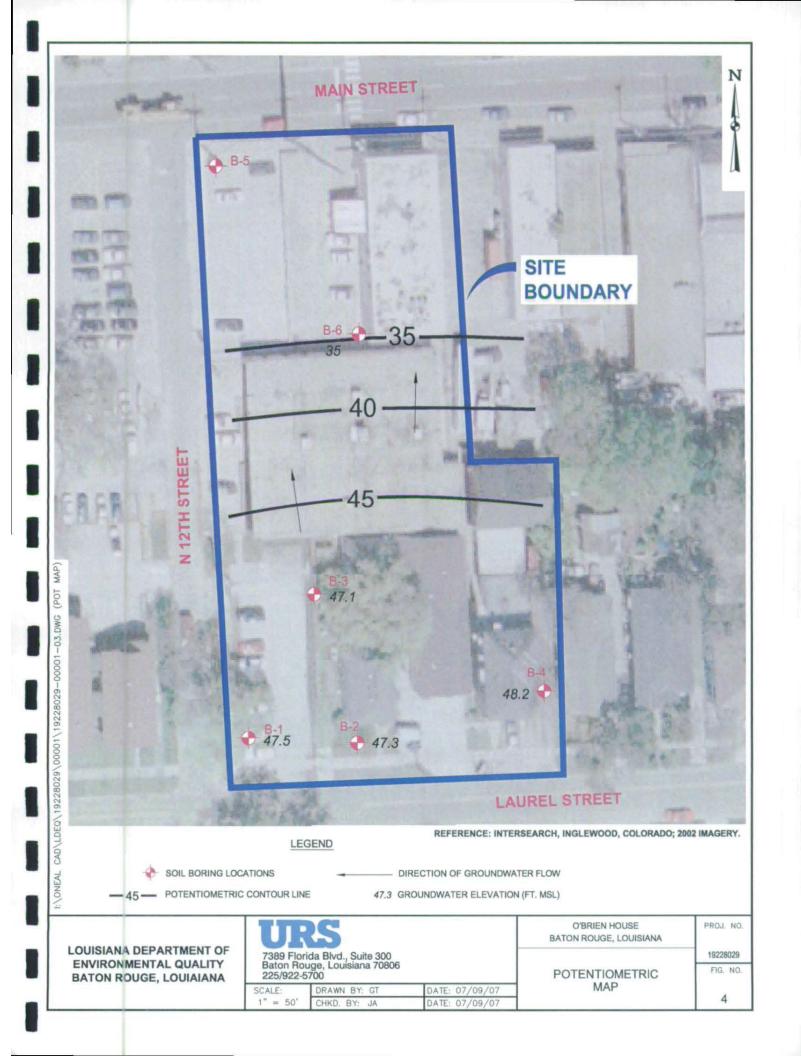

\_\_\_\_\_

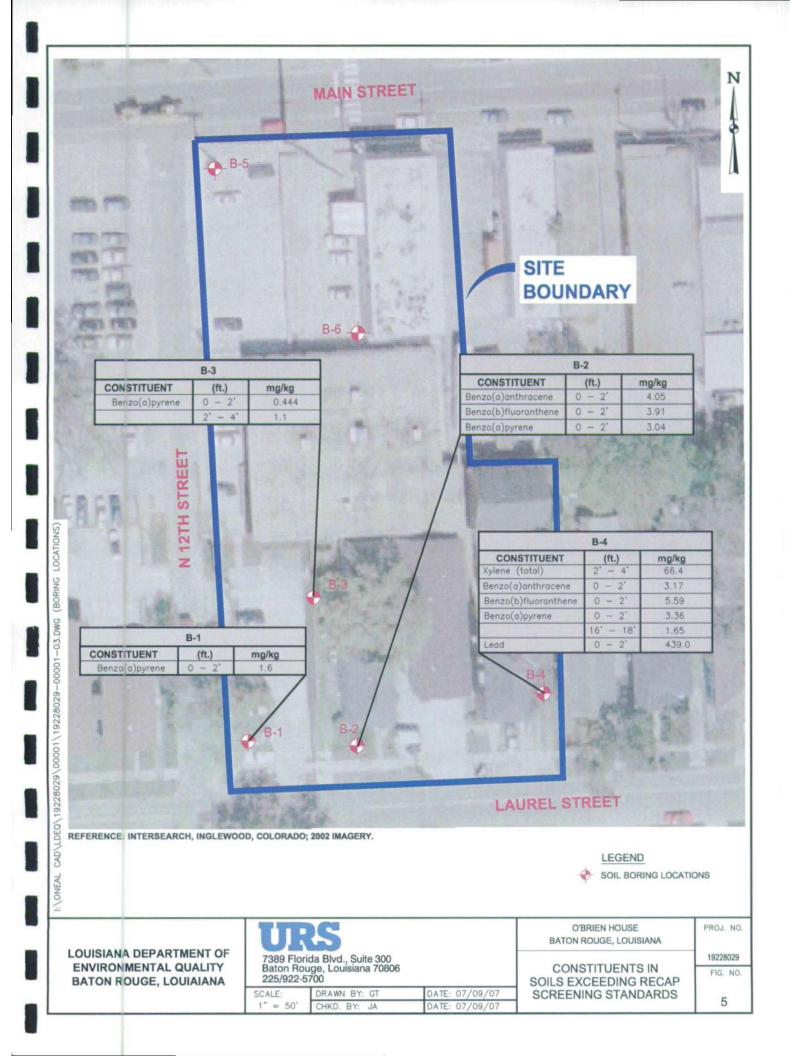

ĺ

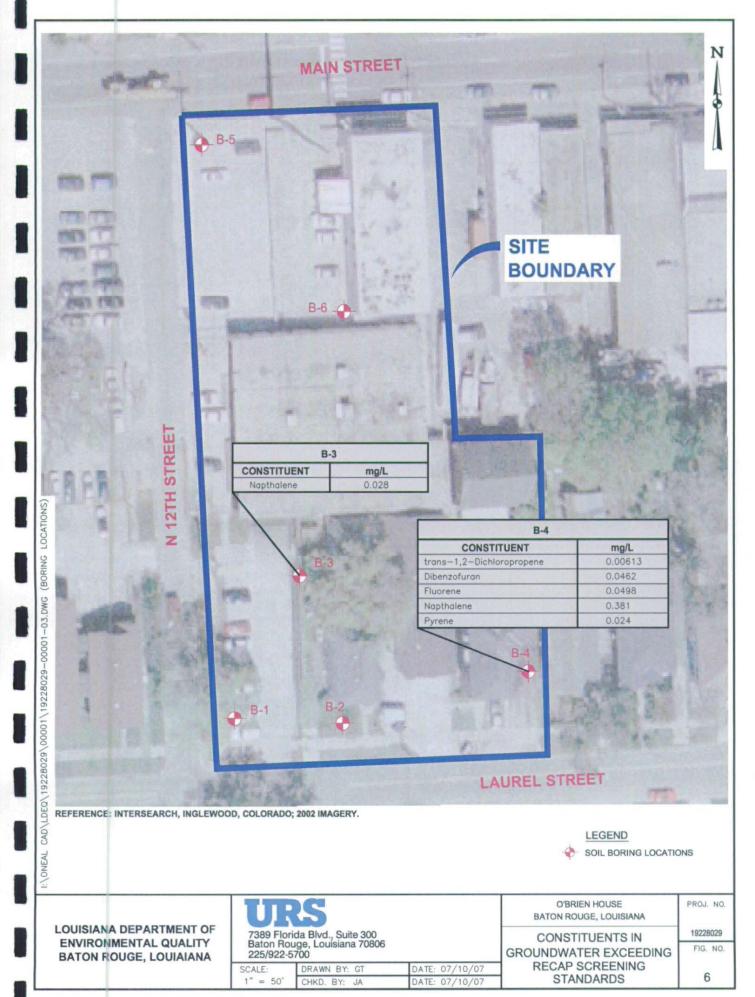
~


### FIGURES








M4 0011.1 1002 ,#2 duk .gobmanf - thurse? - DW2 M0-10000







-

· . . .

. . . .

.

APPENDIX A

### BORING LOGS

- -

| Client<br>Project<br>Locatio<br>Project | Na<br>Na | Baton I     | hase II<br>Rouge, | Site Inv     | estigatio          | <u>xn</u> . | C          | Initian Started       4/2/07       Ended       4/2/07       Latitude       30°27'03" N         ogged By       J. 'Pratt/S. Krul       Depth To Water       Q ATD 7 feet                                   |                  |
|-----------------------------------------|----------|-------------|-------------------|--------------|--------------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| DEPTH<br>FEET<br>(bgs)                  | SA       | MPLE<br>ID  | TIME              | OVM<br>(ppm) | RECOVERY<br>(Inch) | nscs        | гі тногоб  | DESCRIPTION                                                                                                                                                                                               |                  |
|                                         |          |             |                   |              |                    |             | NT LI      | Red and gray mottled Silty Clay - FILL with roots, moist                                                                                                                                                  | ╞                |
| -                                       |          | 8-1 (0-2)   | 0915              | 0.0          | 24                 | FILL        | 111<br>111 |                                                                                                                                                                                                           | $\left  \right $ |
| 2                                       |          |             |                   |              |                    | <u> </u>    | 111        |                                                                                                                                                                                                           |                  |
| . 2                                     |          |             |                   |              |                    | · .         | K          | Tan and brown Silty CLAY with some black cinder material, moist                                                                                                                                           |                  |
| -                                       |          |             | 0930              | 0.0          | 24                 | . •         | H          |                                                                                                                                                                                                           | $\left  \right $ |
| 4                                       |          |             |                   |              |                    | CL          | K          |                                                                                                                                                                                                           | Ļ                |
|                                         |          |             | 00/0              |              | 12                 |             | R          |                                                                                                                                                                                                           | {                |
|                                         | .        |             | 0940              | 0.0          | 12                 |             |            | with silt seams                                                                                                                                                                                           | ſ                |
| 6-                                      |          |             |                   |              | .•                 |             |            | Light gray and tan CLAY to Silty CLAY                                                                                                                                                                     | - <u> </u> -     |
| -                                       |          | B-1 (6-6)   | 0947              | 0.0          | 24                 | CH-CL       |            | wet                                                                                                                                                                                                       | ¥                |
| 8—                                      |          |             |                   |              |                    |             |            |                                                                                                                                                                                                           |                  |
| С.                                      |          |             |                   |              |                    |             |            | Stiff, gray and tan Silty CLAY to CLAY with ferrous nodules and stains                                                                                                                                    |                  |
| -                                       |          |             | 0950              | 0.0          | 24                 |             |            |                                                                                                                                                                                                           | -                |
| 10                                      |          |             |                   |              |                    |             |            |                                                                                                                                                                                                           | -                |
|                                         |          |             | 0955              | 0.0          | 8                  |             | R          | · · · · · ·                                                                                                                                                                                               | •                |
| 10                                      |          |             |                   |              |                    |             |            |                                                                                                                                                                                                           |                  |
| .12-                                    | Π        |             |                   |              |                    | CL-CH       |            |                                                                                                                                                                                                           | F                |
| . * -                                   |          |             | 1005              | 0.0          | 24                 |             |            |                                                                                                                                                                                                           | F                |
| · 14                                    |          |             |                   |              |                    |             |            |                                                                                                                                                                                                           | -                |
|                                         |          |             | 1008              | 0.0          | 24                 |             | H          |                                                                                                                                                                                                           | _                |
|                                         |          |             | -                 | -            |                    |             | H          |                                                                                                                                                                                                           |                  |
| 16                                      |          | -           |                   |              |                    |             |            | Stiff, brown CLAY                                                                                                                                                                                         |                  |
| •                                       |          | 8-1 (16-18  |                   |              |                    | СН          |            |                                                                                                                                                                                                           | -                |
| . 18-                                   |          |             |                   |              |                    |             | 1          | Total depth of boring at 18' bgs.                                                                                                                                                                         |                  |
|                                         |          |             |                   |              |                    |             |            | Set screen 7'-17' bgs.                                                                                                                                                                                    |                  |
| -                                       |          |             |                   |              |                    |             |            |                                                                                                                                                                                                           | Ī                |
| -                                       |          | ·           |                   |              |                    | ·           |            |                                                                                                                                                                                                           |                  |
| U                                       | Ļ        | <b>S</b> 73 | 389 Fl<br>aton F  | Rouge,       | Boulev             |             | •••        | 300<br>Remarks: Unified Soil Classification Based on Visual Observations.<br>ATD = Water depth at time of drilling.<br>bgs = below ground surface.<br>msl = mean sea level.<br>OVM = organic vapor meter. |                  |

1

ł

| ocatio              | Bato        | Phase 1<br>In Rouge<br>Pr _ 1922 | , LA         |                    | <u>on</u> | 0         | rill Method Geoprobe       Latitude 30°27'03" N         rilling Started 4/2/07       Ended 4/2/07         Longitude 91°10'39" W         ogged By       J. Pratt/S. Krul         Depth To Water       Z ATD 14 feet | t bgs  |
|---------------------|-------------|----------------------------------|--------------|--------------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| EPTH<br>EET<br>bgs) | Sampl<br>ID | E 3WF                            | OVM<br>(ppm) | RECOVERY<br>(Inch) | Uscs      | гітногобу | – – –<br>DESCRIPTION                                                                                                                                                                                               | ОЕРТН  |
|                     |             |                                  |              |                    | FILL      | YT.       | Dark brown Silt/Soil - FILL<br>Tan and brown Silty CLAY with ferrous nodules and cinders                                                                                                                           | -      |
| -                   | B-2 (0      | 2) 1225                          | 0.0          | 14                 | CL        | Z         |                                                                                                                                                                                                                    | +      |
| 2-                  |             |                                  |              |                    |           |           | Stiff, tan and light gray Silty CLAY                                                                                                                                                                               | 2      |
|                     |             |                                  |              |                    |           | K         |                                                                                                                                                                                                                    |        |
| 1                   |             | 1230                             | 0.0          | 12                 |           | X         |                                                                                                                                                                                                                    | -      |
| 4-                  | -           |                                  |              |                    | CL        | K         |                                                                                                                                                                                                                    | -4     |
| -                   |             | 1235                             | 0.0          | 12                 |           | H         |                                                                                                                                                                                                                    | -      |
| 6-                  |             | 1                                |              |                    |           | H         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                              | _ _ e  |
|                     |             |                                  |              |                    | 1         |           | Very stiff Silty CLAY to CLAY                                                                                                                                                                                      |        |
| رمار<br>ا           |             | 1240                             | 0.0          | 16                 |           |           | ·                                                                                                                                                                                                                  | ŀ      |
| 8-                  | -           |                                  |              |                    |           |           |                                                                                                                                                                                                                    | -8     |
|                     |             | 1250                             | 0.0          | 24                 |           |           |                                                                                                                                                                                                                    | +      |
| 10-                 | <u>.</u>    |                                  |              |                    |           |           |                                                                                                                                                                                                                    | -1     |
|                     |             | 1055                             |              |                    |           |           | with light gray silt pockets                                                                                                                                                                                       |        |
| -                   |             | 1255                             | 0.0          | 24                 |           | R         |                                                                                                                                                                                                                    | -      |
| 12-                 | -           | ·                                |              |                    | CL-CH     |           | becoming more silty                                                                                                                                                                                                | -1     |
| -                   |             | 1227                             | 0.0          | 24                 |           |           |                                                                                                                                                                                                                    | -      |
| 14                  | ni          |                                  |              |                    |           |           | moist at 14' to 15'                                                                                                                                                                                                | ¥1     |
|                     |             | 4200                             |              | 24                 |           |           |                                                                                                                                                                                                                    |        |
|                     | 8-2 (1      | +16) 1300                        | 0.0          | 24                 |           |           |                                                                                                                                                                                                                    | ſ      |
| 16—                 |             |                                  |              |                    |           |           |                                                                                                                                                                                                                    |        |
| -                   | B-2 (1      | 130s                             | 0.0          | 24                 |           |           |                                                                                                                                                                                                                    | -      |
| 18-                 |             | ľ                                |              |                    |           | K         | Total depth of boring at 18' bgs.                                                                                                                                                                                  | _  _ • |
|                     |             |                                  |              |                    | 1         |           | Set screen 8'-18' bgs.                                                                                                                                                                                             |        |
|                     |             |                                  |              |                    |           |           |                                                                                                                                                                                                                    |        |
| -                   |             |                                  |              |                    |           |           |                                                                                                                                                                                                                    |        |
|                     | ,           | URS C<br>7389 F                  |              |                    |           |           | Remarks: Unified Soil Classification Based on Visual Observations.<br>ATD = Water depth at time of drilling.                                                                                                       |        |

•

1

.

.

| LOG OF | BORING | B |
|--------|--------|---|
|        | · .    |   |
|        |        |   |

| DEPTH<br>FEET<br>(bgs)         SAMPLE<br>ID         W<br>ID         OVM<br>(ppm)         W<br>UD<br>UD         OVM<br>(ppm)         W<br>UD<br>UD         IS<br>SO<br>S         D<br>SSIF         DESCRIPTION           2         Ib3(b2)         1515         0.0         18         ML         Brown SiLT with roots         -           4         Ib3(b2)         1515         0.0         18         ML         Brown SiLT with roots         -           4         Ib3(b2)         0.0         10         -         -         -wet         -           4         1525         0.0         8         CL        wet         -        wet         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project N<br>Location<br>Project N | Baton I     | Rouge, | LA  |                |      | Drill Method Geoprobe       Latitude 30°27'04" N         Drilling Started Ended       Longitude 91°10'39" W         Logged By _J. Pratt/S. Krul       Depth To Water ATD 3 feet | bgs               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|--------|-----|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2         sa(ex)         1515         0.0         16         ML         Brown SiLT with roots         -           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |             | -      |     |                | - Co |                                                                                                                                                                                 | Ţ                 |
| Image: Second | FEEI                               | 1           | BMIT   |     | RECOV<br>(înch | nsc  |                                                                                                                                                                                 | DEPTH             |
| Image: All state         1520         0.0         10        weit          weit        weit        weit        weit        weit        weit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | B-3 (0-2)   | 1515   | 0.0 | 16             | ML   | Brown SILT with roots                                                                                                                                                           | -                 |
| 1525       0.0       8       CL      light gray in color, slight odor      light gray in color, slight odor         6       1530       0.0       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                  | B-3 (2-4)   | 1520   | 0.0 | 10             |      |                                                                                                                                                                                 | ¥                 |
| 8         1530         0.0         10         Gray and light gray Clayey SILT         6           10         1545         0.0         18         MH         Stiff, light gray and tan Silty CLAY with ferrous nodules         6           12         1553         0.0         8         CL         Stiff, light gray and tan Silty CLAY with ferrous nodules         6           14         1605         0.0         6         Stiff, brown CLAY         6           18         1610         0.0         7         CH         Stiff, brown CLAY           18         Total depth of boring at 16" bgs.         Stiff bgs.         Stiff bgs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-4                                |             | 1525   | 0.0 | 8              | CL   |                                                                                                                                                                                 | -4                |
| 8       1545       0.0       18       MH       Gray and light gray Clayey SILT       6         10       1550       0.0       18       MH       Stiff, light gray and tan Silty CLAY with ferrous nodules       6         12       1553       0.0       8       CL       5       6         14       1605       0.0       6       5       5       5         18       1605       0.0       7       CH       Stiff, brown CLAY       6         18       18       1610       0.0       7       CH       Stiff, brown CLAY       7         18       1610       0.0       7       CH       Stiff, brown CLAY       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                  | -           | 1530   | 0.0 | 10             |      |                                                                                                                                                                                 | - 6               |
| 10       1550       0.0       10         12       1553       0.0       8       CL         14       1605       0.0       6         16       1605       0.0       6         18       1610       0.0       .7         CH       Total depth of boring at 18' bgs.       Set screen 3'-18' bgs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                  | -           |        |     |                |      | Gray and light gray Clayey SILT                                                                                                                                                 | 8                 |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                 |             | 1545   | 0.0 | 18             | MH   | Stiff, light gray and tan Silty CLAY with ferrous nodules                                                                                                                       | -<br> .<br> -  10 |
| 14     1553     0.0     8     CL       14     1605     0.0     6       16     1605     0.0     6       16     Bas (16-18)     1610     0.0       18     1610     0.0     .7       Total depth of boring at 18' bgs.<br>Set screen 3'-18' bgs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                 |             | 1550   | 0.0 | 10             |      |                                                                                                                                                                                 | -                 |
| 16       1605       0.0       6         16       B-3 (16-18)       1610       0.0       .7         18       1610       0.0       .7       CH         Total depth of boring at 18' bgs.<br>Set screen 3'-18' bgs.       Total depth of boring at 18' bgs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                  |             | 1553   | 0.0 | 8              | CL   |                                                                                                                                                                                 |                   |
| - B-3 (16-18) 1610 0.0 .7 CH<br>18-<br>18-<br>Total depth of boring at 18' bgs.<br>Set screen 3'-18' bgs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |             | 1605   | 0.0 | 6              |      |                                                                                                                                                                                 | - 14              |
| 18 - Total depth of boring at 18' bgs.<br>Set screen 3'-18' bgs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                  | B-3 (16-18) | 1610   | 0.0 | .7             | СН   | Stiff, brown CLAY                                                                                                                                                               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 -                               |             |        |     |                |      | Total depth of boring at 18' bgs.<br>Set screen 3'-18' bgs.                                                                                                                     | 11                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |             |        |     |                |      | · ·                                                                                                                                                                             |                   |

. . .

. . .

ľ

. . . 

|    |                    |    |                       |                          |              | estigatio                  | <u>n</u> |                 | rill Method Geoprobe Latitude 30°27'03" N                                                                                                                                                                 |          |
|----|--------------------|----|-----------------------|--------------------------|--------------|----------------------------|----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |                    |    |                       | Rouge,                   |              |                            |          | _               | rilling Started <u>4/3/07</u> Ended <u>4/3/07</u> Longitude <u>91°10'37" W</u>                                                                                                                            | <b>.</b> |
| Pr | roject             | Nu | mber                  | 19228                    | 029.000      | 001                        |          | _ L             | ogged By J. Pratt/S. Krul Depth To Water V ATD 4 feet I                                                                                                                                                   | ogs      |
| FE | PTH<br>EET<br>xgs) | SA | MPLE<br>ID            | TIME                     | OVM<br>(ppm) | RECOVERY<br>(inch)         | nscs     | гітногобу       | DESCRIPTION                                                                                                                                                                                               | HLGHU    |
|    | :<br>              |    | B-4 (0-2)             | 1310                     | 0.0          | 24                         | FILL     | 7 7 7 7 7 7 7 7 | Dark brown Silt with gravel - FILL                                                                                                                                                                        | -        |
|    | 2                  |    | B-4 (2-4)             | 1317                     | 31.3         | 16                         | CL       |                 | Dark gray Silty CLAY with ferrous stains                                                                                                                                                                  | 2        |
|    | 4-                 |    |                       |                          | 0.0          | 12                         | мн       |                 | Soft, gray SILT, moist                                                                                                                                                                                    | ¥-4      |
|    | 6-                 |    |                       | 1320                     | 0.0          | 15                         |          |                 | Stiff, brown and tan Silty CLAY                                                                                                                                                                           |          |
|    | 8                  |    |                       | 1325                     | 0.0          | 10                         |          |                 | —very stiff                                                                                                                                                                                               | - 8      |
|    | 10                 |    |                       | 1330                     | 0.0          | 14                         | CL       |                 |                                                                                                                                                                                                           | -        |
|    | - 14               |    |                       | 1340                     | 0.0          | 10                         |          |                 |                                                                                                                                                                                                           |          |
|    | 16-                |    |                       | 1345                     | 0.0          | 12                         |          |                 | · · ·                                                                                                                                                                                                     |          |
|    |                    |    | <br>B-4 (16-11        | n 1410                   | 0.0          | 7                          | сн-с     |                 | Stiff, brown CLAY to Silty CLAY                                                                                                                                                                           | -        |
|    | 18-                |    |                       |                          |              |                            |          |                 | Total depth of boring at 18' bgs.<br>Set screen 3'-18' bgs.                                                                                                                                               |          |
|    | U                  | R  | <b>S</b> <sup>7</sup> | 389 F<br>aton I<br>eleph | Rougé        | Boulev<br>, LA_7<br>225 92 | 0806     |                 | 300<br>Remarks: Unified Soil Classification Based on Visual Observations.<br>ATD = Water depth at time of drilling.<br>bgs = below ground surface.<br>msl = mean sea level.<br>OVM = organic vapor meter. |          |

| Proje<br>Loca          | ect N<br>tion | DEQ-O'B<br>ame _P<br>Baton I<br>umber | hase II<br>Rouge,          | Site Inv<br>LA | estigatic                       | <u>n</u> | _ 0<br>_ D | rill Contractor       Walker-Hill Environmental, Inc.       Ground Surface Elevation          rill Method       Geoprobe       Latitude       30°27'06" N         rilling Started       4/3/07       Ended       4/3/07       Longitude       91°10'39" W         ogged By       J. Pratt/S. Krul       Depth To Water       ☑ ATD       16 feet | bgs      |
|------------------------|---------------|---------------------------------------|----------------------------|----------------|---------------------------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| DEPTH<br>FEET<br>(bgs) | .   S         | AMPLE<br>ID                           | TIME                       | OVM<br>(ppm)   | RECOVERY <sup>4</sup><br>(inch) | USCS     | ПТНОГОСУ   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                      | DEPTH    |
| 2                      |               | B-5 (0-2)                             | 1505                       | 0.0            | 24                              | FILL     |            | Soft, brown Slity Clay - FILL<br>Medium to soft, brown and tan Silty CLAY                                                                                                                                                                                                                                                                        | - 2      |
| 4                      | -             |                                       | 1508                       | 0.0            | 15                              | CL       |            | Medium, light gray Silty CLAY                                                                                                                                                                                                                                                                                                                    |          |
| 6                      | -             |                                       | 1515                       | 0.0            | 24                              |          |            | Medium to stiff, light gray and tan Silty CLAY with ferrous stains and nodules                                                                                                                                                                                                                                                                   | - 6      |
| 8                      | -             |                                       | 1519                       | 0.0            | 24                              | CL       |            |                                                                                                                                                                                                                                                                                                                                                  | - 8      |
| 10                     | -             | -                                     |                            | 0.0            | 24                              |          |            |                                                                                                                                                                                                                                                                                                                                                  | - 1      |
| 12                     | -             |                                       |                            | 0.0            |                                 |          |            | Stiff, tan and light gray Slity CLAY with ferrous nodules                                                                                                                                                                                                                                                                                        | -<br>  1 |
| 14                     | -<br> <br>    |                                       | 1522                       | 0.0            | 24                              |          |            |                                                                                                                                                                                                                                                                                                                                                  | -<br>1   |
| 16                     | · - <br>;     |                                       | 1525                       | 0.0            |                                 | CL       |            | moist                                                                                                                                                                                                                                                                                                                                            | ¥.1      |
| 18                     |               | B-5 (16-18)                           | 1635                       | 0.0            | 24                              |          |            |                                                                                                                                                                                                                                                                                                                                                  | -<br>- 1 |
| 20                     |               | B-5 (18-20)                           | 1640                       | 0.0            | 22                              | СL-СН    |            | Very stiff, brown and light gray Silty CLAY to CLAY<br>Total depth of boring at 20' bgs.<br>Set screen 10'-20' bgs.                                                                                                                                                                                                                              | 2<br>2   |
| U                      | R             | <b>S</b> <sup>73</sup><br>Ba          | 389 Fl<br>aton F<br>elepho | Rouge,         | Boulev<br>, LA 70<br>25 922     | 0806     |            | 300<br>Remarks: Unified Soil Classification Based on Visual Observations.<br>ATD = Water depth at time of drilling.<br>bgs = below ground surface.<br>msl = mean sea level.<br>OVM = organic vapor meter.<br>SHEET 1                                                                                                                             | 0F 1     |

ļ 

I

. ،

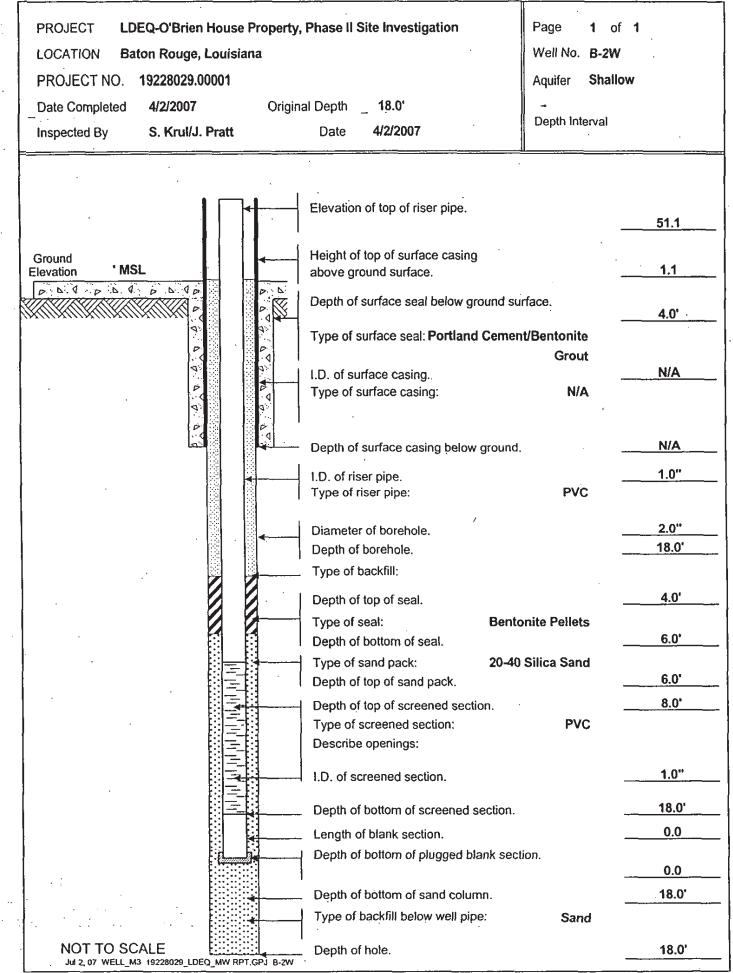
. ·

| Project                | LDEQ-O'B<br>Name P | hase II         | Site Inv     |                                   |       | Dri          | I. Contractor Walker-Hill Environmental, Inc.       Ground Surface Elevation         I. Method Geoprobe       Latitude 30°27'05" N         Iling Started       Ended       Longitude 91°10'38" W | <u> </u> |
|------------------------|--------------------|-----------------|--------------|-----------------------------------|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Project                | Number             | 19228           | 3029.00(     | 001                               |       | Log          | gged By J. Pratt/S. Krul Depth To Water 💆 ATD 8 fee                                                                                                                                              | et bgs   |
| DEPTH<br>FEET<br>(bgs) | SAMPLE<br>ID       | TIME            | OVM<br>(ppm) | RECOVERY<br>(inch)                | USCS  | гітногосу    | DESCRIPTION                                                                                                                                                                                      | -        |
|                        | 8-6 (0-2)          | 1220            | 0.0          | 24                                | CL    |              | oft, brown Silty CLAY                                                                                                                                                                            |          |
| 2-                     |                    | 1230            |              | 18                                |       |              | an and light gray Silty CLAY with ferrous nodules                                                                                                                                                |          |
| 4-                     |                    | 1230            | 0.0          |                                   |       |              |                                                                                                                                                                                                  | -        |
| -                      |                    | 1240            | 0.0          | 24                                | CL    |              |                                                                                                                                                                                                  | -        |
| 6                      |                    | 1245            | 0.0          | 24                                |       |              | –stiff                                                                                                                                                                                           | -        |
| 8                      | B-6 (8-10)         | 1255            | 0.0          | 24 <sup>.</sup>                   | ML.   |              | oft, light gray SILT to Clayey SILT, moist                                                                                                                                                       |          |
| - 12-                  |                    | 1300            | 0.0          | 24                                | · .   |              | Stiff, tan and light gay Silty CLAY with ferrous nodules                                                                                                                                         |          |
| -                      |                    | 1305            | 0.0          | 24                                |       |              |                                                                                                                                                                                                  | -        |
| - 14                   |                    | 1310            | 0.0          | 24                                | CL    |              |                                                                                                                                                                                                  | -        |
| 16—<br>-               | B-6 (16-18)        | 1315            | 0.0          | 24                                |       |              | -                                                                                                                                                                                                | ~        |
| 18-                    |                    | 1320            | 0.0          | 24                                |       |              | /ery stiff, brown and light gray CLAY to Clayey SILT                                                                                                                                             |          |
| 20-                    |                    |                 |              |                                   | сн-сі | <b>7</b> 2 - | Total depth of boring at 20 bgs.<br>Set screen 8'-18' bgs.                                                                                                                                       |          |
|                        |                    |                 |              |                                   |       |              |                                                                                                                                                                                                  |          |
| U                      | 2 <b>5</b> 73      | 89 Fl<br>aton F | Rouge,       | tion<br>Boulev<br>LA 70<br>25 922 | 0806  |              | 00<br>Remarks: Unified Soil Classification Based on Visual Observations.<br>ATD = Water depth at time of drilling.<br>bgs = below ground surface.<br>msl = mean sea level.                       |          |

•

.

### APPENDIX B

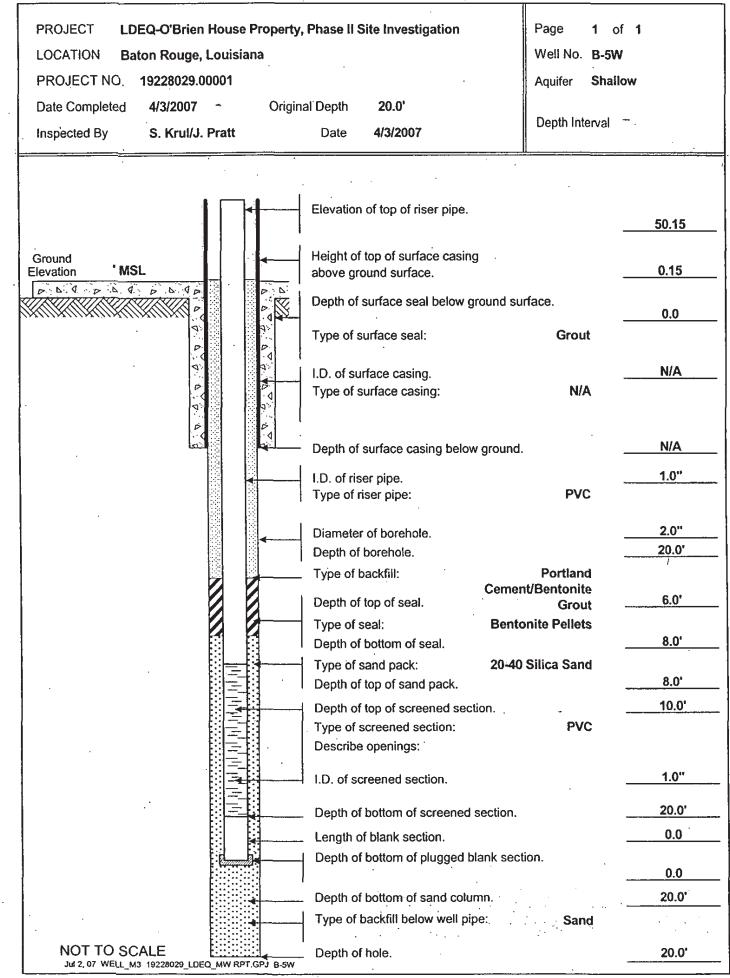

### TEMPORARY WELL INSTALLATION REPORTS

-



|                                                             | Date d if d                   |
|-------------------------------------------------------------|-------------------------------|
| PROJECT LDEQ-O'Brien House Property, Phase II Site Investig |                               |
| LOCATION Baton Rouge, Louisiana                             | Well No. B-1W                 |
| PROJECT NO. 19228029.00001                                  | Aquifer Shallow               |
| Date Completed 4/2/2007 Original Depth 18.0'                |                               |
| Inspected By S. Krul/J. Pratt Date 4/2/2007                 | Depth Interval                |
| · · · · · · · · · · · · · · · · · · ·                       |                               |
|                                                             |                               |
| Elevation of top of ris                                     | er pipe.                      |
|                                                             | 50.0                          |
| Ground Height of top of surface                             |                               |
| Elevation MSL above ground surface                          | <u> </u>                      |
| Depth of surface seal                                       | below ground surface.         |
|                                                             | Portland Cement/Bentonite     |
|                                                             | Grout                         |
| I.D. of surface casing                                      |                               |
| Type of surface casin                                       |                               |
|                                                             |                               |
|                                                             | ng below ground. N/A          |
| Depth of surface casi                                       |                               |
| I.D. of riser pipe.                                         | <u> </u>                      |
| Type of riser pipe:                                         | PVC                           |
| Diameter of borehole                                        | 2.0"                          |
| Depth of borehole.                                          | 20.0*                         |
| Type of backfill:                                           | Grout                         |
| Depth of top of seal.                                       | 2.0'                          |
| Type of seal:                                               | Bentonite Pellets             |
| Depth of bottom of se                                       |                               |
| Type of sand pack:                                          | 20-40 Silica Sand             |
| Depth of top of sand                                        | pack4.5'                      |
| - Depth of top of scree                                     | ned section. 7.0'             |
| Type of screened set                                        |                               |
| Describe openings:                                          |                               |
| I.D. of screened sect                                       | ion. 1.0"                     |
|                                                             |                               |
| Depth of bottom of s                                        | creened section. <u>17.0'</u> |
| Length of blank secti                                       | on1.0'                        |
| Depth of bottom of p                                        | lugged blank section.         |
|                                                             | 0.0                           |
| Depth of bottom of s                                        |                               |
| Type of backfill below                                      | wwell pipe: Sand              |
| NOT TO SCALE                                                | 18.0'                         |

4




1

| LOCATION Baton Rouge, Louisian |                                                                 |            |
|--------------------------------|-----------------------------------------------------------------|------------|
| PROJECT NO. 19228029.00001     |                                                                 | allow      |
| Date Completed _4/2/2007       | Original Depth 18.0' Depth Intervi                              | -<br>al    |
| Inspected By S. Krul/J. Pratt  | Date 4/2/2007                                                   |            |
|                                |                                                                 |            |
|                                | Elevation of top of riser pipe.                                 |            |
|                                |                                                                 | 50.2       |
| Ground                         | Height of top of surface casing                                 |            |
| Elevation 'MSL                 | above ground surface.                                           | 0.25       |
|                                | Depth of surface seal below ground surface.                     | N/A        |
|                                | Type of surface seal: N/A                                       |            |
| 000                            |                                                                 |            |
|                                | I.D. of surface casing.       Type of surface casing:       N/A | <u>N/A</u> |
|                                |                                                                 |            |
|                                | Depth of surface casing below ground.                           | N/A        |
|                                | I.D. of riser pipe.                                             | 1.0"       |
|                                | Type of riser pipe: PVC                                         |            |
|                                | Diameter of borehole.                                           | 2.0"       |
|                                | Depth of borehole.                                              | 18.0       |
|                                | Type of backfill:                                               |            |
|                                | Depth of top of seal.                                           | 0.0        |
|                                | Type of seal: Bentonite Pellets                                 |            |
|                                | Depth of bottom of seal.                                        | 2.01       |
|                                | Type of sand pack: 20-40 Silica Sand                            | 2.0        |
|                                | Depth of top of sand pack.                                      | 2.0        |
|                                | Depth of top of screened section.                               | 3.0        |
|                                | Type of screened section: PVC<br>Describe openings:             |            |
|                                | Describe openings,                                              |            |
|                                | I.D. of screened section.                                       | 1.0'       |
|                                | Depth of bottom of screened section.                            | 18.0       |
|                                | Length of blank section.                                        | 0.0        |
|                                | Depth of bottom of plugged blank section.                       |            |
|                                |                                                                 | 0.0        |
|                                | Depth of bottom of sand column.                                 | 18.0       |
|                                | Type of backfill below well pipe: Sand                          |            |
| NOT TO SCALE                   | Depth of hole.                                                  | 18.0       |

1 l

| PROJECT NO. 19228029.00001    | Aquifer Sh                                                             | allow         |
|-------------------------------|------------------------------------------------------------------------|---------------|
|                               | Driginal Depth <b>18.0'</b>                                            |               |
| Inspected By S. Krul/J. Pratt | Date 4/3/2007 Depth Interval                                           | l             |
|                               |                                                                        | · · · · · · · |
|                               |                                                                        |               |
| [¬₊]-                         | Elevation of top of riser pipe.                                        | 50.0          |
|                               |                                                                        | 50.0          |
| Ground<br>Elevation 'MSL      | Height of top of surface casing                                        | 0.0           |
|                               | above ground surface.                                                  | 0.0_          |
|                               | Depth of surface seal below ground surface.                            | N/A           |
|                               | Type of surface seal: N/A                                              |               |
|                               |                                                                        |               |
|                               | I.D. of surface casing.       Type of surface casing:       N/A        | N/A           |
|                               | Type of surface casing: N/A                                            |               |
|                               |                                                                        |               |
|                               | Depth of surface casing below ground.                                  | <u>N/A</u>    |
|                               | I.D. of riser pipe.                                                    | 1.0"          |
|                               | Type of riser pipe: PVC                                                |               |
|                               | Diameter of borehole.                                                  | 2.0"          |
|                               | Depth of borehole.                                                     | 18.0'         |
|                               | Type of backfill:                                                      |               |
|                               | Depth of top of seat.                                                  | 0.0           |
|                               | Type of seal: Bentonite Pellets                                        |               |
|                               | Depth of bottom of seal.                                               | 2.0*          |
|                               | Type of sand pack: 20-40 Silica Sand<br>Depth of top of sand pack.     | 2.0'          |
|                               | Depth of top of screened_section.                                      | 3.0'          |
|                               | Type of screened section: PVC                                          |               |
|                               | Describe openings:                                                     |               |
|                               | I.D. of screened section.                                              | 1.0"          |
|                               |                                                                        | 40.0          |
|                               | Depth of bottom of screened section.                                   | <u> </u>      |
|                               | Length of blank section.     Depth of bottom of plugged blank section. | 0.0           |
|                               |                                                                        | 0.0           |
|                               | Depth of bottom of sand column.                                        | 18.0          |
|                               | Type of backfill below well pipe: Sand                                 |               |



### MONITOR WELL INSTALLATION REPORT PROJECT LDEQ-O'Brien House Property, Phase II Site Investigation Page 1 of 1 Well No. B-6W LOCATION Baton Rouge, Louisiana PROJECT NO. 19228029.00001 Shallow Aquifer **Date Completed** 4/3/2007 **Original Depth** 20.0" Depth Interval 4/3/2007 Inspected By S. Krul/J. Pratt Date Elevation of top of riser pipe. 50.1 Height of top of surface casing Ground 0.1 MSL Elevation above ground surface. D. D. A. D. D. A. 0 0 00 5 Depth of surface seal below ground surface. D 0.0 4 Type of surface seal: Portland Cement/Bentonite D Grout d, N/A I.D. of surface casing. Ď Type of surface casing: N/A 4 Å, Ď N/A Depth of surface casing below ground. 1.0" I.D. of riser pipe. Type of riser pipe: **PVC** 2.0" Diameter of borehole. 20.0' Depth of borehole. Type of backfill: Grout 4.0' Depth of top of seal. **Bentonite Pellets** Type of seal: 6.0' Depth of bottom of seal. Type of sand pack: 20-40 Silica Sand 6.0' Depth of top of sand pack. 8.0' Depth of top of screened section. Type of screened section: **PVC** Describe openings: 1.0" I.D. of screened section. 18.0 Depth of bottom of screened section. 0.0 Length of blank section. Depth of bottom of plugged blank section. 0.0 20.0' Depth of bottom of sand column. Type of backfill below well pipe: Sand NOT TO SCALE 20.0 Depth of hole. Jul 2, 07 WELL M3 19228029\_LDEQ\_MW RPT.GPJ B-6W

APPENDIX C

### **GROUNDWATER COLLECTION REPORTS**





L.

### **GROUNDWATER COLLECTION REPORT**

|                      | ERATOR S. Kr. 1 J. Pratt                                                                 | WELL NO                                   | B - IW                                |
|----------------------|------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|
| <b>TYPE OF SAMPI</b> | E WATER () GRAB                                                                          | () COMPOSITE () OTHER                     |                                       |
| METHOD OF SA         | MPLING IF OTHER THAN MONITOR V                                                           | VELL - SHU                                | ITTLE NO.                             |
| MONITOR W            | ELL INFORMATION                                                                          |                                           |                                       |
| EVACUATION:          | DATE/TIME 4/3/07 09                                                                      | 30 METHOD OF EV                           | ACUATION Pump                         |
| · · · ·              | INITIAL DEPTH TO WATER LEVEL                                                             |                                           |                                       |
| · · ·                | GALLONS PER WELL VOLUME                                                                  |                                           | IS EVACUATED 2.0                      |
| · · ·                | FINAL DEPTH TO WATER                                                                     |                                           | P OF CASING 0.0                       |
|                      | · · ·                                                                                    |                                           | · · · · · · · · ·                     |
| SAMPLING:            | DATE/TIME 4/3/07 11                                                                      | METHOD OF SA                              | MPLING Pump                           |
|                      | DEPTH TO WATER LEVEL 12                                                                  | .25                                       | 1                                     |
| SAMPLE DAI           | <u>`A</u>                                                                                |                                           |                                       |
| FIELD REPLICAT       | <br>ГЕ#1 ТЕМР. <b>~~. %°</b> С рН                                                        | 5.99 CONDUCTIV                            | ITY 1197                              |
| FIELD REPLICAT       |                                                                                          | <u> </u>                                  |                                       |
| FIELD REPLICAT       |                                                                                          | (6.67) CONDUCTIV                          |                                       |
| FIELD REPLICAT       |                                                                                          | G.57 CONDUCTIV                            |                                       |
| SAMPLING CHA         | DITIONS AT TIME OF SAMPLING $P_a$<br>RACTERISTICS $Sightly classical structures 3 - Voc$ | oudy water                                | Amber for Suda                        |
|                      | Plastic for metals                                                                       | 11.000                                    |                                       |
| 1                    | non/observations <u>wellmen</u><br>metals prior to 5 a                                   | rdry atter 2.0                            | gallons                               |
| Filtered             | merais prior to 5a                                                                       | mp II rig                                 |                                       |
|                      |                                                                                          |                                           | · · · · · · · · · · · · · · · · · · · |
|                      |                                                                                          |                                           |                                       |
| SAMPLE ID NUM        | IBERS B-1W and B-1                                                                       | WD (Duplicate)                            | · · · · · · · · · · · · · · · · · · · |
| SAMPLE ID NUM        | · · · · ·                                                                                |                                           | 1/30                                  |
|                      | · · · · ·                                                                                | тіме <u>0930</u> то                       | 1/30                                  |
|                      | · · · · ·                                                                                |                                           | []30                                  |
| SAMPLING PERS        | · · · · ·                                                                                | TIME 0930 TO                              | <u>  30</u>                           |
| SAMPLING PERS        | SONNEL<br>Constant<br>Gned)                                                              | тіме <u>0930</u> то<br>date <u>4/3/07</u> | · · · · · ·                           |
| SAMPLING PERS        | SONNEL<br>Constant<br>Gned)                                                              | TIME 0930 TO                              | · · · · · ·                           |



### **GROUNDWATER COLLECTION REPORT**

.

.

|                                                                                                                                             | ERATOR <u>S.K. 1 J. Pra++</u><br>E ()GRAB ()C                                                                                                                                                                                                                                                                           |                                                                                                                                      | -210                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                             | MPLING IF OTHER THAN MONITOR WELL                                                                                                                                                                                                                                                                                       |                                                                                                                                      | •                                                        |
| 1                                                                                                                                           | ELL INFORMATION                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |                                                          |
| •                                                                                                                                           | DATE/TIME $\frac{4/3/07}{1000}$ 1000<br>INITIAL DEPTH TO WATER LEVEL 33.<br>GALLONS PER WELL VOLUME<br>FINAL DEPTH TO WATER 16.8<br>DATE/TIME $\frac{4/4/07}{085}$ 085<br>DEPTH TO WATER LEVEL 9.3                                                                                                                      | 70TOP OF CASING TO BOTTTOTAL GALLONS EVACU5ELEVATION TOP OF CASE                                                                     | TOM <u>18.02</u><br>JATED <u>1.5</u><br>ING <u>861.1</u> |
| FIELD REPLICA<br>FIELD REPLICA                                                                                                              |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |                                                          |
| FIELD REPLICA'<br>FIELD REPLICA'                                                                                                            | ГЕ #3 ТЕМР. <u>22.9</u> ° рН <u>(</u>                                                                                                                                                                                                                                                                                   |                                                                                                                                      | 1282                                                     |
| FIELD REPLICA<br>GENERAL IN<br>WEATHER CON<br>SAMPLING CHA<br>CONTAINERS A<br><br>RECOMMENDA                                                | ГЕ #3 ТЕМР. <u>22.9</u> ° рН <u>(</u>                                                                                                                                                                                                                                                                                   | <u>, 83</u> CONDUCTIVITY<br><u>CONDUCTIVITY</u><br><u>y cloudy + warm =</u><br><u>s</u> , 21-liter Amber for<br>dry after 1.5 gallor | 75°                                                      |
| FIELD REPLICA<br>GENERAL IN<br>WEATHER CON<br>SAMPLING CHA<br>CONTAINERS A<br><br>RECOMMENDA                                                | TE #3 TEMP. <u>22.9°</u> pH <u>(</u><br>TE #4 TEMP. <u>pH</u><br>FORMATION<br>DITIONS AT TIME OF SAMPLING <u>Porth</u><br>RACTERISTICS <u>Clear water</u><br>ND PRESERVATIVES <u>3-VOC vials</u><br><u>Plastic for metals</u><br>FION/OBSERVATIONS <u>well went</u><br><u>metals prior</u> to sample                    | <u>, 83</u> CONDUCTIVITY<br><u>CONDUCTIVITY</u><br><u>y cloudy + warm =</u><br><u>s</u> , 21-liter Amber for<br>dry after 1.5 gallor | 75°                                                      |
| FIELD REPLICA<br>GENERAL IN<br>WEATHER CON<br>SAMPLING CHA<br>CONTAINERS A<br><br>RECOMMENDA<br>F; /fered<br>SAMPLE ID NUN<br>SAMPLING PER: | TE #3 TEMP. <u>22.9°</u> pH <u>6</u><br>TE #4 TEMP. <u>pH</u><br>FORMATION<br>DITIONS AT TIME OF SAMPLING <u>Parth</u><br>RACTERISTICS <u>Clear water</u><br>ND PRESERVATIVES <u>3-UOC vials</u><br>Plastic for metals<br>FION/OBSERVATIONS <u>well went</u><br>metals prior to sample<br>MBERS <u>B-2</u><br>SONNEL TI | <u>, 83</u> CONDUCTIVITY<br><u>CONDUCTIVITY</u><br><u>y cloudy + warm =</u><br><u>s</u> , 21-liter Amber for<br>dry after 1.5 gallor | 75°                                                      |



### **GROUNDWATER COLLECTION REPORT**

|     | PROJECT NUMBER AND NAME 1922 8029.00001, O'Brien House LOCATION Baton Rouge<br>COLLECTOR/OPERATOR <u>S. K. 1 / J. Pratt</u> Well NO. <u>B-3 W</u>                                                                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . · | TYPE OF SAMPLE Water () GRAB () COMPOSITE () OTHER                                                                                                                                                                                                                                                                           |
|     | METHOD OF SAMPLING IF OTHER THAN MONITOR WELL SHUTTLE NO                                                                                                                                                                                                                                                                     |
|     | MONITOR WELL INFORMATION                                                                                                                                                                                                                                                                                                     |
| •   | EVACUATION:DATE/TIME $\frac{4/3}{07}$ $10/5$ METHOD OF EVACUATION $P_{Ump}$ INITIAL DEPTH TO WATER LEVEL $7.85$ TOP OF CASING TO BOTTOM $18.30$ GALLONS PER WELL VOLUMETOTAL GALLONS EVACUATED $3.5$ FINAL DEPTH TO WATER $7.7$ ELEVATION TOP OF CASING $0.25$ SAMPLING:DATE/TIME $\frac{4/3}{07}$ $1040$ METHOD OF SAMPLING |
|     | DEPTH TO WATER LEVEL <u>6.76</u>                                                                                                                                                                                                                                                                                             |
|     | SAMPLE DATA                                                                                                                                                                                                                                                                                                                  |
|     | FIELD REPLICATE #1       TEMP.       Z 3.3°C       pH       6.77       CONDUCTIVITY       988.8         FIELD REPLICATE #2       TEMP.       Z1.7°       pH       6.67       CONDUCTIVITY       942.6         FIELD REPLICATE #3       TEMP.       Z1.3°       pH       6.68       CONDUCTIVITY       922.7                  |
| •   | FIELD REPLICATE #4 TEMP PH CONDUCTIVITY                                                                                                                                                                                                                                                                                      |
|     | GENERAL INFORMATION                                                                                                                                                                                                                                                                                                          |
|     | WEATHER CONDITIONS AT TIME OF SAMPLING $cloudy \approx 75^{\circ}$                                                                                                                                                                                                                                                           |
|     | SAMPLING CHARACTERISTICS <u>Slightly cloudy water with a slight odor</u>                                                                                                                                                                                                                                                     |
|     | CONTAINERS AND PRESERVATIVES <u>3 UOC vials</u> , <u>2 1-liter Amber For SUOC</u> .<br>1 1-liter Plastic for metals                                                                                                                                                                                                          |
|     | RECOMMENDATION/OBSERVATIONS                                                                                                                                                                                                                                                                                                  |
|     | Filtered metals prior to sampling                                                                                                                                                                                                                                                                                            |
|     | Filtered metals prior to sampling<br>collected matrix spike and matrix spike cluplicate somples                                                                                                                                                                                                                              |
|     | at this location.                                                                                                                                                                                                                                                                                                            |
|     | , , , -                                                                                                                                                                                                                                                                                                                      |
|     | SAMPLING PERSONNEL TIME 1015 TO 1040                                                                                                                                                                                                                                                                                         |
|     | (SIGNED) DATE 4/3/07                                                                                                                                                                                                                                                                                                         |
|     | LOCK OR SEAL NUMBER REPLACEMENT SEAL NUMBER                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                              |
|     | NURSBITE LOCALIDESROOTPROJECTSUDEG/19228028-O'BRIEN HOUSE PROPI WP0000100BRIEN HOUSE-SAP APP BKGW-COLL-RPT-FRM DOC                                                                                                                                                                                                           |

|                  |                                               | · .             | (                                     | ·             |
|------------------|-----------------------------------------------|-----------------|---------------------------------------|---------------|
| · .              |                                               | •               |                                       | TTDC          |
| . موجد مطلاب .   |                                               | • •             |                                       | UIG           |
|                  | GROUNDWATE                                    | R COLLEC        | TION REPORT                           | •             |
| • .              | ER AND NAME 1922802<br>ERATOR <u>S.K. 1/J</u> |                 | House                                 |               |
| PROJECT NUMB     | ER AND NAME 1922802                           | 9.000010        | Brien LOCATION 0                      | aton Rouge, L |
| COLLECTOR/OP     | ERATOR S.KallJ                                | . Pratt         | WELL NO. 📝                            | 3-441         |
| TYPE OF SAMPL    | E water WC                                    | GRAB () COMP    | OSITE () OTHER                        | · · ·         |
| METHOD OF SA     | MPLING IF OTHER THAN MONI                     | ÍTOR WELL       | SHUTTLE                               | NO            |
| <u>MONITOR W</u> | ELL INFORMATION                               | · · ·           |                                       |               |
| ;<br>EVACUATION: | DATE/TIME 4/4/07                              | 0945            | _ METHOD OF EVACUA                    | TION PUMP     |
|                  | INITIAL DEPTH TO WATER L                      |                 | -<br>TOP OF CASING TO BO              |               |
|                  | GALLONS PER WELL VOLUM                        |                 | _ TOTAL GALLONS EVA                   |               |
|                  | FINAL DEPTH TO WATER                          | 7.72            |                                       |               |
| · .              |                                               | · .             | —                                     |               |
| SAMPLING:        | DATE/TIME 4/4/07                              | 1015            | METHOD OF SAMPLIN                     | IG Pump       |
|                  | DEPTH TO WATER LEVEL                          | 7.91            | _                                     | /             |
| S'ANDI E DA'I    | Г <b>А</b>                                    |                 |                                       |               |
| SAMPLE DA'       |                                               |                 |                                       |               |
| FIELD REPLICA    | ГЕ #1 ТЕМР. <u>19.4 °C</u>                    | рН <u>6.4</u>   | CONDUCTIVITY                          | 592           |
| FIELD REPLICA    | ге #2 темр. <u>19-2°</u>                      | рН <u>6.6</u>   | CONDUCTIVITY                          | 616           |
| FIELD REPLICA    |                                               | рН <u>6.7</u>   | <b>9</b> CONDUCTIVITY                 | 81.6          |
| FIELD REPLICA    |                                               | рн <u>6.9</u>   | 5 CONDUCTIVITY                        | 808           |
| CENEDAL IN       | FORMATION                                     |                 |                                       |               |
| GENERAL IN       | FORMATION                                     | •               | · · · ·                               |               |
| WEATHER CON      | DITIONS AT TIME OF SAMPLIN                    | ig <u>Cloud</u> | 1+ warm = 75                          | >             |
| SAMPLING CHA     | RACTERISTICS <u>51ightly</u>                  | v cloudy i      | vater                                 |               |
| CONTAINERS A     | ND PRESERVATIVES 3- UO                        |                 |                                       | forsvoc       |
| <u>   -lite</u>  | Plastic For Metal                             | 5               |                                       | · · ·         |
|                  | FION/OBSERVATIONS                             |                 |                                       |               |
| Filtered         | metals prior to sa                            | impling         |                                       | ·             |
|                  | -                                             |                 |                                       |               |
| SAMPLE ID NUN    | $\frac{1}{\beta} = \beta - 4\omega$           |                 | · · · · · · · · · · · · · · · · · · · | ····          |
| SAMPLING PERS    |                                               | TIME            | 0945 TO 101                           | 15            |
| SAMPLING PERS    | SONNEL .                                      |                 |                                       | <u> </u>      |
| A                | Tal                                           | DATE            | 4/4/07                                |               |
| (SI              | GNED)                                         |                 | <del>[</del>                          | _ <u></u>     |
|                  |                                               |                 |                                       |               |
|                  |                                               | REPLACE         |                                       |               |
| LOCK OR SEAL     |                                               | KEI E/(CEI      | MENT SEAL NUMBER                      |               |

.



### **GROUNDWATER COLLECTION REPORT**

| PROJECT NUMBE  | ER AND NAME 19228029.00001 O'BrienHadocation Baton Rouge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | ERATOR S.Krul I J. Pratt WELL NO. B-GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TYPE OF SAMPLI | E Water (x) GRAB () COMPOSITE () OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| METHOD OF SAM  | APLING IF OTHER THAN MONITOR WELL SHUTTLE NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MONITOR WI     | ELL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EVACUATION:    | DATE/TIME 4/4/07 1445 METHOD OF EVACUATION Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| · .            | INITIAL DEPTH TO WATER LEVEL $15.0$ TOP OF CASING TO BOTTOM $18.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · .            | GALLONS PER WELL VOLUME TOTAL GALLONS EVACUATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . 1            | FINAL DEPTH TO WATER 17.55 ELEVATION TOP OF CASING 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAMPLING:      | DATE/TIME <u>4/5/07</u> 0915 METHOD OF SAMPLING Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SAMPLE DAT     | A contraction of the second seco |
| FIELD REPLICAT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FIELD REPLICAT | E #2 TEMP. 22.2 pH 7.01 CONDUCTIVITY 1339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FIELD REPLICAT | E #3 TEMP. 22.1 pH 7.64 CONDUCTIVITY 1296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FIELD REPLICAT | E #4     TEMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GENERAL IN     | FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WEATHER COND   | DITIONS AT TIME OF SAMPLING $cloudy + cool \approx 60^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMPLING CHAI  | RACTERISTICS Slightly cloudy water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | ND PRESERVATIVES 3- voc vials 2 1-lifer amber for SUOC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | Plastic for metals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RECOMMENDAT    | ION/OBSERVATIONS well weat dry atter 0.75 gal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Filteredme     | tels during sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAMPLE ID NUM  | IBERS B-GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SAMPLING PERS  | TIME <u>1445</u> TO <u>0915</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . 1-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - da           | - M DATE 4/5/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (SI            | GNED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LOCK OR SEAL N | NUMBER REPLACEMENT SEAL NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

NURSBIT LOCALIDESROOTPROJECTS/LDEC/19228029-OBRIEN HOUSE PROPL\_WP/20001/0BRIEN HOUSE SAP\_APP BIGW-COLL-RPT-FRM DOC

### APPENDIX D

.

### ANALYTICAL DATA QUALITY ASSURANCE REVIEW



### **Appendix D**

Quality Assurance Data Review for LDEQ Targeted Brownfields Assessments Program – 1200 Main Street, Baton Rouge, Louisiana: Analysis by Pace Analytical Laboratories, Inc. in Saint Rose, Louisiana, Project Nos. 2068139, 2068190, 2068250, and 2068300.

URS performed a quality assurance data review for the samples collected for the LDEQ Targeted Brownfields Assessment Program site investigation of 1200 Main Street, Baton Rouge, Louisiana. All laboratory analyses were performed by Pace Analytical Laboratories, Inc. (Pace) in Saint Rose, Louisiana. The laboratory job numbers assigned for soil boring and groundwater samples are shown below with the date of sample collection:

| Date of Sample<br>Collection | Lab Sample<br>Group No. | Number of<br>Soil Samples | Number of<br>Groundwater<br>Samples | Number of Field Quality<br>Control Samples                        |
|------------------------------|-------------------------|---------------------------|-------------------------------------|-------------------------------------------------------------------|
| 04/02/07 to<br>04/05/07      | 2068                    | 54                        | 18                                  | (Soil, Water) 1,1 DUP; 2,1 MS;<br>2,1 MSD; 0,4 TB; 0,1 FB; 0,1 RS |

MS = Matrix Spike, MSD = Matrix Spike Duplicate, DUP = Duplicate, TB = Trip Blank, FB = Field Blank, RS = Equipment Rinsate

### LABORATORY SAMPLE IDENTIFICATION & ANALYSES REQUEST

After sample collection, all samples were submitted to Pace in Saint Rose, Louisiana for analysis. The groundwater and soil samples analyzed for TCL VOA were done so by their respective Method 8260B (and 5035 for soil samples); TCL SVOA by Method 8270C; and TAL metals by Methods 6010C, 9012, and 7000 for soil and water matrices. The following tables summarize the soil, groundwater, and quality control analytical programs conducted for this site investigation.

### Sample Analytical Program

|          | SOILS            |           |
|----------|------------------|-----------|
| Analysis | Samples Analyzed | Borings   |
| VOA      | 18               | 1-6       |
| SVOA     | 18               | 1-6       |
| Metals   | 18               | 1-6       |
|          | GROUNDWATER      |           |
| Analysis | Samples Analyzed | Borings   |
| VOA      | 5                | 1,2,3,4,6 |
| SVOA     | 5 ·              | 1,2,3,4,6 |



### **Appendix D**

|            | SOILS            |           |
|------------|------------------|-----------|
| Analysis 📑 | Samples Analyzed | Borings   |
| VOA        | . 18             | 1-6       |
| SVOA       | 18               | 1-6       |
| Metals     | 18               | 1-6       |
|            | GROUNDWATER      |           |
| Analysis   | Samples Analyzed | Borings   |
| Metals     | • 5              | 1,2,3,4,6 |

### **Quality Control Analytical Program**

|          | SOILS            |               |
|----------|------------------|---------------|
| Analysis | Samples Analyzed | Q/C Samples   |
| VOA      | 4                | MŞ(2), MSD(2) |
| SVOA     | . 4              | MS(2), MSD(2) |
| Metal    | 4                | MS(2), MSD(2) |

|          | GROUNDWATER      |                                                             |  |  |
|----------|------------------|-------------------------------------------------------------|--|--|
| Analysis | Samples Analyzed | Q/C Samples                                                 |  |  |
| VOA      | 8                | MS(1), MSD(1), Trip Blank(4), Field<br>Blank(1), Rinsate(1) |  |  |
| SVOA     | 3                | MS(1), MSD(1), Rinsate(1)                                   |  |  |
| Metals   | 3                | MS(1), MSD(1), Rinsate(1)                                   |  |  |

### Analytical Program Totals

| SOILS |      |        |
|-------|------|--------|
| VOA   | SVOA | Metals |
| 22    | 22   | 22     |

| GROUNDWATER |      |        |
|-------------|------|--------|
| VOA         | SVOA | Metals |
| 13          | 8 -  | 8      |

### HOLDING TIMES

All TCL VOA soil samples were collected in Encore<sup>™</sup> samplers, were extracted within the specified holding time of 48 hours, and were analyzed within the holding time criterion of 14 days. TCL VOA groundwater samples were analyzed within the holding time criterion of 14 days from sample collection for water samples preserved with hydrochloric acid or 7 days if



### **Appendix D**

Martin .

unpreserved. All TCL SVOA were extracted within the specified holding time of 7 days from sample collection for water matrix or 14 days for soil matrix. SVOA extracts were analyzed within the specified holding time of 40 days from sample extraction. All Metals samples were analyzed within 28 days of sample collection. No data were qualified as estimated or rejected as unusable due to improper sample preservation or exceeded holding times. Complete reports of quality control by project are attached as Appendix F.

### BLANKS

All laboratory method blanks and quality control trip blanks or field blanks associated with the sample analyses performed for all sample work orders were free of the target compounds. Complete reports of quality control by project are attached as Appendix F.

### SURROGATE SPIKES

All surrogate percent recoveries (%Rs) were within the specified quality control limits for the VOA, SVOA, and TAL Metals analyses with the exception of the surrogate recovery for the soil sample B-4(2-4) which was outside control limits and was attributed to sample dilution, which is not considered an excursion. Complete reports of quality control by project are attached as Appendix F.

### MATRIX SPIKE AND MATRIX SPIKE DUPLICATES

The Matrix Spike (MS)/Matrix Spike Duplicates (MSD) %R and RPD values were all within specified quality control limits with the exception of those listed in Laboratory Project Reports for the following projects: 2068139, 2068190, 2068250, and 2068300. Complete reports of quality control by project are attached as Appendix F.

### LABORATORY CONTROL SAMPLES

The results for the Laboratory Control Samples (LCSs) and Laboratory Control Sample Duplicates (LCSDs) were all within specified quality control limits. Complete reports of quality control by project are attached as Appendix F.



# **Appendix D**

11.12

#### **DUPLICATE SAMPLES**

One field sample and field duplicate groundwater sample (Sample ID/Laboratory ID: B-1W/20511783 and B-1WD/20511784) were collected. There are no established precision criteria for field duplicate results. The sample and field duplicate results are in relative agreement when typically demonstrated by a low percent difference. No results were qualified or rejected based upon the field duplicate results. The results of detected concentrations reported in the water matrix sample and the associated field duplicate is attached in Appendix F, Laboratory Project Report 2068190.

#### OVERALL ASSESSMENT

Acceptable levels of analytical accuracy and precision were achieved except where noted in this report. The above qualifications are based on the detections of the above listed constituents in the analytical method and matrix-specific method blank.

# **APPENDIX E**

# GCAL ANALYTICAL LABORATORY DATA REPORTS

# (SEE RED ROPES)

ł

- . . -- . -

\_

| - · · · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                        |                   |                  | -                                           |                   |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------|------------------|---------------------------------------------|-------------------|------------------------------|
| HAZARDOU<br>OFFICE OF SOLID /<br>DEPARTMENT OF EI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WIRONMENTAL QU<br>BATON ROUCE, LA<br><b> </b>                                            | /AS<br>JAL<br>708 | D <b>n For</b> i | F<br><u> -A</u> <u> -</u> A<br>Date<br>Date |                   |                              |
| 1. NAME OF INSTALLATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S ONE HOU                                                                                | R                 |                  | NIZING                                      |                   |                              |
| BATON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RUSILLA LA<br>CITY OR TOWN<br>ROULE                                                      |                   |                  |                                             | <br>₹₽ cop        | PIPE PARISH CODE             |
| 3. LOCATION: SAME AS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NAME & TITLE TAST. THERE, S                                                              |                   |                  |                                             | PHONE (area       | 033                          |
| A DONTACT: TRACIE CLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RK MANALE.                                                                               | <u></u>           |                  | 50                                          | 492               | 79298                        |
| 5. OWNERSHIP: CIAKANO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NAME OF COMPANY                                                                          |                   |                  | ABLE                                        |                   |                              |
| 6. OPERATOR: SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WHER.                                                                                    |                   | • • • • • • •    |                                             |                   |                              |
| 7. NOTIFICATION TYPE: (Mark applicable boxes. Give Installation's La. I.D. No. and EPA I.D. No. if known)<br>Notification is: It the first for this installation I a subsequent notification I installation I installation I a subsequent notification I installation I |                                                                                          |                   |                  |                                             |                   |                              |
| B. TRANSPORTER: Modes of transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ition used are:                                                                          | -                 |                  |                                             | <u> </u>          | 1985 V                       |
| 🗆 air 🖸 water 🖾 highway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          | pecif             | y:               |                                             | <u> </u>          |                              |
| <ul> <li>C. DISPOSER: 1. Hazardous wastes and</li> <li>2. For on-site disposer of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accepted:<br>There is a comme<br>from others on a comme<br>only: Enter disposer handling | rciai             | basis            | wnership)                                   | A FOF             |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROM OFF-SITE                                                                             |                   |                  |                                             |                   | C 1 0 1985                   |
| <ul> <li>D. USER OF RECYCLABLE MATERIAL FROM OFF-SITE</li> <li>DEC 1 0 1985</li> <li>DESCRIPTION OF HAZARDOUS WASTES (generators only)<br/>GENERATORS must complete all applicable parts of item 9. Read the detailed instructions carefully before making entries. Guided by the instructions entries of the appropriate waste category (item 9 part) the four-digit number for each waste handled at your installation. For parts A, DEC 1 0 1985 columns opposite each waste number entry to indicate now that particular waste is disposed of and handled. Mark under the space of the disposed for and handled. Mark under the space of the bisposer Handling Code(s) used in handling that waste on-site. Use additional sheets if nebessary and ciparty indicate on each sheet the item number part to which it applies.</li> <li>A. HAZARDOUS WASTES FHOM NON-SPECIFIC SOURCES (Category I-A)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |                   |                  |                                             |                   |                              |
| WASTE DISPOSED REUSED<br>NUMBER ON-SITE OFF-SITE RECYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DISPOSER<br>HANDLING CODEISI                                                             |                   | WASTE<br>NUMBER  | DISPOSED<br>ON-SITE OFF-SITE                | REUSED<br>RECYCLE | DISPOSER<br>HANDLING CODE(S) |

| NUMBER    | ON-SITE | OSED<br>OFF-SITE  | REUSED                  | DISPOSER<br>HANDLING CODEISI |   |
|-----------|---------|-------------------|-------------------------|------------------------------|---|
|           |         |                   |                         | ,                            |   |
|           | +       | $\vdash \searrow$ | ⊢_/                     |                              |   |
|           | +       | <u>├</u>          | $\mathbb{N}/\mathbb{H}$ |                              | - |
| <u> </u>  | ╉────   |                   | $\mathbb{H}$            |                              |   |
|           |         |                   | ┟──┣                    | $\overline{}$                | 1 |
|           |         | 1                 |                         |                              | 1 |
| 1 /8 7/8% |         |                   |                         |                              | ] |

. .....

|   | OSED<br>OFF-SITE           | REUSED<br>RECYCLE | DISPOSER<br>HANDLING CODEISI |
|---|----------------------------|-------------------|------------------------------|
|   |                            |                   |                              |
|   | <u> </u>                   |                   |                              |
|   | $\Box$                     |                   |                              |
|   | $\perp \chi$               |                   | <u> </u>                     |
|   | <br>$\perp \bigtriangleup$ |                   |                              |
| _ |                            |                   |                              |
| _ | <br>                       |                   |                              |
|   |                            |                   |                              |

HW-1 (R 7/63)

-



| WASTE<br>NUMBER | DISPO<br>CINI-BITE | iged<br>Offisite | MEUSED<br>MECYCLE | DISPOSER<br>HANDLING CODE(S) |
|-----------------|--------------------|------------------|-------------------|------------------------------|
| 1002            |                    | N.               | MA                | T63                          |
|                 |                    |                  | 1                 |                              |
|                 |                    |                  |                   |                              |
|                 |                    |                  |                   |                              |
|                 |                    |                  |                   |                              |
|                 |                    |                  |                   |                              |
|                 |                    |                  |                   |                              |
|                 |                    |                  |                   |                              |

| WAETE<br>NUMBER | DISPI<br>ON-SITE | OSED<br>OFF-SITE | REUBED<br>RECYCLE | DISPOSER<br>HANDLING CODE(S) |
|-----------------|------------------|------------------|-------------------|------------------------------|
|                 |                  |                  |                   |                              |
|                 |                  |                  |                   |                              |
|                 |                  |                  |                   |                              |
|                 |                  |                  |                   |                              |
|                 |                  | l                |                   |                              |
|                 |                  |                  |                   |                              |
|                 |                  |                  |                   |                              |
|                 |                  |                  |                   |                              |

#### C. COMMERCIAL CHEMICAL PRODUCTS HAZARDOUS WASTES (Category I-C)

| WASTE<br>NUMBER | DISP<br>ON SITE | OSED<br>OFF SITE | REVISED | DISPOSER<br>MANQLING CODE:SI |   | WARTE<br>NUNDER | DISP<br>ON-SITE | OSED<br>OFF-SITE | REUBED<br>RECYCLE | DISPOSER<br>HANDLING CODER |
|-----------------|-----------------|------------------|---------|------------------------------|---|-----------------|-----------------|------------------|-------------------|----------------------------|
|                 |                 |                  |         |                              |   |                 |                 |                  |                   |                            |
|                 |                 |                  |         |                              | 4 | Ļ               | ┟───            |                  |                   |                            |
|                 |                 |                  |         |                              | 4 |                 | <u> </u>        | <b> </b>         |                   |                            |
|                 |                 |                  |         |                              | - | <b></b>         |                 |                  |                   |                            |
|                 |                 |                  |         |                              | 1 |                 |                 |                  |                   |                            |
|                 |                 |                  |         |                              | 1 |                 |                 |                  |                   |                            |
|                 | _               |                  |         |                              | ] |                 |                 |                  |                   |                            |

D. CHARACTERISTICS OF NON-Line SD HAZARDOUS WASTES (Category II)

Mark the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding tc. - r aracteristics of non-listed hexardous wastes your installation handles. Use criteria in Appendix A, Cate, ir discriminant in the boxes corresponding to the boxes correspondence to the boxes corresponde

2 List EP Toxic Waste numbers from odes at Category II-D, Appendix A and make other appropriate entries in the spaces provided.

| WASTE<br>NUMBER | DISP<br>ON SITE | OSED<br>OFF SITE | AF, JC<br>Rec Due | DISPOSER<br>HANDLING CODEIS |
|-----------------|-----------------|------------------|-------------------|-----------------------------|
|                 |                 |                  |                   |                             |
| <b>¦</b> −−−−   |                 | <u> </u>         |                   |                             |
|                 |                 |                  |                   |                             |
|                 |                 |                  |                   |                             |
| <u> </u>        | - <u> </u>      |                  | ┠──┤              |                             |
| <u>}</u>        | +               |                  | ┣                 | ·                           |

| WASTE<br>NUMBER | DISPO<br>ON-SITE | OFF SITE | AEUSED<br>RECYCLE | CAROSER<br>HANGLING CODERS |
|-----------------|------------------|----------|-------------------|----------------------------|
|                 |                  |          |                   |                            |
|                 |                  |          | ┝╼╌┾              |                            |
|                 | ╋╍╍┥             |          | ┝───╆             |                            |
|                 |                  |          |                   |                            |
|                 |                  |          | ┞──┼              |                            |
|                 |                  |          | ┟──┼              |                            |

------

10. CERTIFICATION

••

i certify under penalty of law that I have personally examined and am familiar with the information submitted in this and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete, ram,aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

|            | Sm. Edunk        | Nerre and Official Title | President            |
|------------|------------------|--------------------------|----------------------|
| Company    | Drusille C.n. k. | Mastiniping              | Date Bigned 2 9 6 5- |
| $\bigcirc$ |                  | 99                       | -                    |

LDEQ-EDMS Document 6073497, Page 1 of 1

ò



### LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY Environmental Assistance Division, Compliance Assistance Section P O Box 4313, Baton Rouge, LA 70821

602 North Fifth St, Baton Rouge, LA 70802 (Physical Address)

#### **CERTIFICATION OF NO HAZARDOUS WASTE ACTIVITY**

I certify, under penalty of law, that the facility named below does not presently generate, store, treat, transport, or dispose of hazardous wastes, as defined in the Louisiana Hazardous Waste Regulation. I certify that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment.

TYPE OF CHANGE RESULTING IN NO HAZARDOUS WASTE ACTIVITY: (Check all that apply)

- \_\_\_\_\_ Facility has no hazardous waste present at site.
- Facility is out of business. Date of Closure:
- <u>X</u> Facility no longer offers services which generate, store, treat, transport, or dispose of hazardous waste. Date service discontinued: <u>JAN 2009</u>
- \_\_\_\_\_ Temporary ID being deactivated. Date of last manifest: \_\_\_\_\_\_
- \_\_\_\_\_ Other, please describe:\_\_\_\_

#### FOR THE FACILITY REQUESTING CERTIFICATION:

Facility Name: DRUSILLA CLEANERS

EPA ID Number: **LAD981149776** 

Physical Address: 3406 DRUSILLA LN; BATON ROUGE, LA 70809

Signature & Date: Narry Lolary 101

Print Name & Title: Darry Cacham

DIST CA GEN CEG FOR OFFICE USE ONLY DIST CA GEN CEG TRANS \_\_\_\_\_ TSD \_\_\_\_ B/B \_\_\_\_ AI 5567 \_\_\_\_

Reps & Certs

Revised 08/2006

MRCRA Info 10/29/9 TEMPO



March 15, 2013

Mr. Alex Knight Brokerage/Development Donnie Jarreau Real Estate, Inc. 10604 Coursey Boulevard Baton Rouge, LA 70816

Re: Additional Phase II Environmental Site Assessment Drusilla Shopping Center Baton Rouge, East Baton Rouge Parish, Louisiana Providence Project No. 884-001

Dear Mr. Knight:

On behalf of Donnie Jarreau Real Estate, Inc. (Donnie Jarreau), Providence completed a Phase I Environmental Site Assessment (ESA) of the Drusilla Shopping Center in February 2013. The Drusilla Shopping Center is located at 3458 Drusilla Lane in Baton Rouge, East Baton Parish, Louisiana. A site location map is included as **Figure 1**.

Based on the findings of Providence's Phase I ESA dated February 4, 2013, a Phase II ESA of the property was recommended. Providence's Phase II recommendations included the investigation of soil and groundwater at the property as well as an investigation of potential asbestos containing material (ACM) and lead-based paint, as the construction of on-site structures predated 1978.

Providence conducted the Phase II soil and groundwater sampling activities at the Drusilla Shopping Center from February 5 through February 7, 2013 to investigate the recognized environmental conditions and non-scope conclusions identified in the February 2013 Phase I ESA. Soil samples were collected from six locations, and groundwater samples were collected from four locations on the subject property. Boring locations B-1 through B-6 are shown on the attached **Figure 2**. Groundwater was attempted to be collected at all locations, but could not be collected at locations B-4 and B-5 due to lack of groundwater or insufficient groundwater yield.

Based on the historical use of the subject property and the historical uses of the adjoining properties, sample analyses included volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and eight Resource Conservation and Recovery Act (RCRA) metals.

In addition to soil and groundwater sampling and analysis activities at the Drusilla Shopping Center property, Providence also conducted surveys from February 6 through February 8, 2013 to determine whether or not the subject property contained ACM or lead-based paints. Lead-based paint readings were collected of all interior and exterior painted surfaces on the structures located at the site. ACM samples were also collected from various interior ceiling board, insulation, and flooring materials in structures located at the subject property. Lead and asbestos results were provided in the previous letter report dated

Mr. Alex Knight March 15, 2013 Page 2 of 6

February 22, 2013.

The results of the Phase II ESA soil and groundwater sampling activities are summarized in **Tables 1** through **3** and were previously reported via letter dated February 22, 2013. The following conclusions were drawn based on the initial Phase II ESA activities:

- Detected concentrations of trichloroethene exceed the Louisiana Department of Environmental Quality's (LDEQ's) Risk Evaluation/Corrective Action Program (RECAP) Limiting Screening Standards based on industrial land use (LSS<sub>i</sub>) in the soil located in the parking lot north of the former Kean's The Cleaner (boring B-2) and in the delivery road north of the former Drusilla Cleaners (boring B-4).
- Detected concentrations of 1,2-dichloroethene (total), cis-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride exceed the RECAP GWss in the groundwater located in the parking lot north of the former Kean's The Cleaner (boring B-2). Groundwater was not encountered in the temporary well installed in B-4, north of the former Drusilla Cleaners where soil impacts were identified.
- Detected concentrations of the dry cleaning solvent tetrachloroethene and its breakdown products indicate that impacts have occurred from the previous dry cleaning operations conducted at the site and/or at the adjoining Kean's The Cleaner site.
- Detected concentrations of arsenic, chromium, and lead exceed the RECAP LSS in the groundwater east of the former Drusilla Cleaners (boring B-3), and in the groundwater west of Building 2 (boring B-6).
- Because impacts to soil and groundwater have been identified above LDEQ's RECAP Screening Standards, the reporting requirements of the Louisiana Administrative Code (LAC) at LAC 33:1.3919 and LAC 33:1.3925 should be met. Furthermore, these impacts should be further evaluated and/or remediated, as necessary, under the LDEQ's RECAP or Voluntary Remediation Program (VRP).
- Lead paint was not detected at the subject property for the painted surfaces surveyed.
- ACM was detected in floor tiles and mastic collected from three different locations; therefore, as a
  best management practice, care should be taken to avoid the creation of potential asbestos fibers
  during demolition or remodeling activities involving these materials. Any demolition, removal, or
  remodeling of the identified building materials should be conducted by trained personnel and in
  accordance with all applicable regulations.

To determine the reasonable costs associated with further evaluation of the site under RECAP and possible corrective actions required, Providence recommended the following additional sampling:

- Installation of up to five delineation borings around boring B-4 for collection of soil and groundwater samples for VOC analysis
- Determine groundwater flow direction using temporary piezometers installed to collect groundwater samples
- Slug test one temporary piezometer to determine site-specific groundwater classification under RECAP

Mr. Alex Knight March 15, 2013 Page 3 of 6

#### Additional Soil and Groundwater Sampling Activities

A contracted driller advanced four boreholes (B-7 through B-10) using a GeoProbe Macro-Core. The boring locations are indicated on **Figure 2**. Up to four samples were collected from each boring from the following intervals, as applicable:

- Surface soil [0-3 feet below ground surface (bgs)]
- Soil/water interface
- Bottom depth of the boring
- Highest Photoionization Detector (PID) screened interval

Each soil sample was visually classified in accordance with American Society for Testing and Materials (ASTM) Standard D2488 and documented on a field log by an experienced professional using the Unified Soil Classification System. Boring logs are provided in **Appendix A**.

Temporary piezometers with pre-packed well screens were installed in each borehole and allowed to develop overnight. The following day, Providence purged the piezometers and collected groundwater samples. Groundwater samples from the additional borings were analyzed for VOCs. The temporary piezometers and boreholes were properly plugged and abandoned at the completion of field activities.

The additional soil and groundwater analytical results are included in **Tables 1** through **3**. The analytical laboratory reports are included in **Appendix B**.

As shown in **Table 1**, detected concentrations in soils were compared to the LDEQ's RECAP Limiting Screening Standards based on industrial land use (LSS<sub>i</sub>). The LSS<sub>i</sub> applied were the lower of the Industrial Soil (Soil<sub>SSi</sub>) and the Soil Protective of Groundwater (Soil<sub>SSGW</sub>) Screening Standards provided in Table 1 of RECAP (LDEQ 2003), with the exception that the Soil<sub>SSGW</sub> was eliminated from consideration for all volatile constituents of concern (COC) except 1,2-dibromo-3-chloropropane and tetrachloroethene based on Synthetic Precipitation Leaching Procedure (SPLP) analyses shown in **Table 2**. (Note: Previous SPLP results indicated tetrachloroethene concentrations in soils were protective of groundwater; however, additional SPLP analyses were required to be conducted based on the additional sampling as maximum detected concentrations are now observed at B-8, and tetrachloroethene concentrations are no longer protective of groundwater.) As shown in **Table 1**, detected concentrations of trichloroethene and tetrachloroethene exceed the LSS<sub>i</sub>.

As shown in **Table 2**, detected concentrations of 1,2-dichloroethene (total), cis-1,2-dichloroethene, tetrachloroethene, trichloroethene, vinyl chloride, arsenic, chromium, and lead exceed the RECAP Groundwater Screening Standards (GW<sub>SS</sub>) provided in Table 1 of RECAP (LDEQ 2003) in at least one well sampled.

Based on additional site characterization data collected during the additional Phase II ESA activities, Management Option 1 (MO-1) Limiting RECAP Standards (LRS) were calculated for soil and groundwater as shown in **Tables 4** and **5**, respectively. Supporting documentation for standard calculations is included in **Appendix C**. Indoor and outdoor exposures were evaluated as part of the preliminary MO-1 evaluation, as soils and/or groundwater impacted with VOCs may be present beneath an enclosed structure. Vapor Mr. Alex Knight March 15, 2013 Page 4 of 6

emissions from soil and groundwater to indoor air cannot be evaluated under the RECAP Screening Option.

MO-1 LRS were calculated based on slug testing conducted on the temporary piezometer installed at B-10, and testing demonstrated that the uppermost water-bearing zone underlying the site is a Groundwater Classification 3 aquifer under RECAP. Slug testing and groundwater classification documentation is provided in **Appendix D**. The nearest downgradient surface water body [i.e. the point of exposure (POE)] was identified to further classify shallow groundwater underlying the site as either a Groundwater Classification 3 Drinking Water (GW<sub>3DW</sub>) or Non-Drinking Water (GW<sub>3NDW</sub>) aquifer in accordance with Appendix H of RECAP (LDEQ 2003). Based on the southerly groundwater flow direction depicted on **Figure 3**, the unnamed drainage canal along the southern property boundary was identified as the nearest downgradient surface water body, or the POE. The POE is located in Basin Segment/Subsegment 040201 (Bayou Manchac – From headwaters to Amite River). The Louisiana Surface Water Quality Standards at LAC 33:IX Chapter 11<sup>1</sup> have established the following designated uses for Basin Segment/Subsegment 040201: primary contact recreation, secondary contact recreation, and propagation of fish and wildlife. Basin segment 040201 is not classified as a drinking water supply per LAC 33:IX Chapter 11. Therefore, the groundwater is further classified as a GW<sub>3NDW</sub> aquifer.

Preliminary MO-1 LRS for surface soils were calculated as the lowest of the following standards provided in Table 2 of RECAP (LDEQ 2003), as applicable, and as shown in **Table 4**:

- Industrial Soil (Soil<sub>i</sub>), adjusted for additive effects (see Appendix C)
- Soil<sub>GW3NDW</sub>, with adjustment for dilution and attenuation (*i.e.* DF3 applied)
- Soil saturation concentration (Soilsat), and
- Industrial Vapor Emissions from Soil to Enclosed Structure (Soilesi), adjusted for additive effects (see Appendix C)

Soil<sub>GW3NDW</sub> MO-1 RS were multiplied by a DF3 (or DF2 for some COC as noted in Table 4), and identified as adjusted Soil<sub>GW3NDW</sub> MO-1 RS in **Table 4**. The DF3/DF2 was 111 based on RECAP Appendix H, an average saturated thickness of less than or equal to five feet, and a distance from the point of compliance (POC) to the POE of 751 to 1,000 feet. B-8 was identified as the POC for soils.

Preliminary MO-1 LRS for site groundwater were calculated as the lowest of the following standards provided in Table 3 of RECAP (LDEQ 2003), as applicable, and as shown in **Table 5**:

- GW<sub>3NDW</sub>, with adjustment for dilution and attenuation (i.e. DF3 applied)
- Industrial Vapor Emissions from Groundwater to Ambient Air (GW<sub>airi</sub>), adjusted for additive effects, as applicable (see **Appendix C**)
- Industrial Vapor Emissions from Groundwater to Enclosed Structure (GW<sub>csi</sub>), adjusted for additive effects, as applicable (see **Appendix C**), and
- Water Solubility (Watersol)

<sup>&</sup>lt;sup>1</sup>Louisiana Administrative Code, Title 33, Part IX, Section 1123, Table 3.

Mr. Alex Knight March 15, 2013 Page 5 of 6

 $GW_{3NDW}$  MO-1 RS were multiplied by a DF3, and identified as adjusted  $GW_{3DW}$  MO-1 RS in **Table 5**. The DF3 was 111 based on RECAP Appendix H, an average saturated thickness of less than or equal to feet, and a distance from the POC (B-8) to the POE of 751 to 1,000 feet.

As shown in **Table 1**, detected concentrations of 1,2-dichloroethene (total), cis-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride exceed the preliminary MO-1 LRS. Maximum detected concentrations of tetrachloroethene [410 milligrams per kilogram (mg/Kg)] and trichloroethene (9.3 mg/Kg) were observed at B-8, as deep as 14-16 feet bgs. Maximum detected concentrations of 1,2dichloroethene (total), cis-1,2-dichloroethene, and vinyl chloride were observed at location B-4 (6-8), and exceed vapor emissions to indoor air standards. B-4 was installed within two feet of the shopping center building behind the former Drusilla Cleaners; therefore, COC in soils may be present beneath the building at concentrations exceeding the indoor vapor emissions standard. Furthermore, based on these results, further vertical delineation at B-8 is warranted to determine the depth of impact, as detected concentrations at the base of the borehole exceed the MO-1 LRS applied. Lateral delineation around B-4 and B-8 has been defined to the east, south, and west; however, further delineation to the north of B-8 (near the northern property boundary) is warranted. Impacts to soils at B-2 (14-16) may be a result of contamination from the off-site, former Kean's the Cleaner site located on the adjacent property. Dry cleaning solvents were not detected in soils collected from B-10 advanced in between the former Drusilla Cleaners site and B-2, which suggests the soil impacts at B-2 could potentially have originated from the former Kean's the Cleaner site. Further delineation in this area of the site may also be warranted; however, if impacts are confirmed to be from an off-site source, further delineation and/or evaluation of these impacts should be the responsibility of the adjacent property owner.

As shown in **Table 3**, concentrations in groundwater were less than the respective MO-1 LRS applied with the exception of tetrachloroethene, trichloroethene, and vinyl chloride. Maximum detected concentrations in groundwater were observed at B-8. Maximum detected concentrations of tetrachloroethene, trichloroethene, and vinyl chloride were 100, 15, and 1.2 milligrams per liter (mg/L), respectively. Tetrachloroethene and vinyl chloride concentrations at B-8 exceed industrial vapor emissions in indoor air from groundwater MO-1 RECAP Standards (36 and 0.49 mg/L, respectively). Boring B-8 was installed approximately 25 feet upgradient of the shopping center; therefore, based on the concentrations observed and a southerly groundwater are present beneath the building at concentrations exceeding the indoor vapor emissions standards. Further delineation of groundwater north of B-8 (near the northern property boundary) is warranted based on these results; however, delineation of groundwater impacts to the south, east, and west is complete.

#### Conclusions

Based upon the results of the Phase II ESA activities conducted in February 2013, detected concentrations of 1,2-dichloroethene (total) and cis-1,2-dichloroethene in soils, and trichloroethene, tetrachloroethene, and vinyl chloride in both soils and groundwater exceed the preliminary MO-1 LRS calculated. Maximum detected concentrations of tetrachloroethene and trichloroethene were observed in B-8, which was advanced near the northern property boundary. Based on these results, further lateral delineation of COC in soils and groundwater is warranted to the north of B-8. Further vertical delineation of soils near B-8 is also warranted to determine depth of impact. Detected concentrations of the dry cleaning solvent tetrachloroethene and its breakdown products indicate that significant impacts have occurred from the

Mr. Alex Knight March 15, 2013 Page 6 of 6

previous dry cleaning operations conducted at the site at the former Drusilla Cleaners site (now Emerald Cleaners). Soil impacts identified at boring location B-2 may be coming from the off-site, adjacent former Kean's The Cleaner site.

This Additional Phase II ESA report is not intended to meet all requirements of a RECAP MO-1 submittal; however, these calculated standards and a comparison to detected concentrations show that based on the intended future use, the available data, and the site-specific groundwater classification, concentrations in soil and groundwater at the site are not protective of human health and the environment for both indoor and outdoor use at some locations. Impacts to soil and groundwater above RECAP Standards may extend off site across the northern property boundary. Because impacts to soil and groundwater have been identified above LDEQ's RECAP Standards, the reporting requirements of LAC 33:1.3919 and LAC 33:1.3925 should be met. Furthermore, these impacts should be further evaluated and/or remediated, as necessary, under the LDEQ's RECAP or VRP, as site concentrations are not protective of human health and the environment. Based on the maximum detected concentrations observed in both soil and groundwater, the potential for off-site impacts above RECAP Standards, and potentially unsafe vapor emissions concerns, Providence does not feel that site concentrations can be "risked away" under typical RECAP Management Option 2 or 3 scenarios. Remedial action will need to be conducted before site concentrations can be reduced to levels protective of human health and environment. A partial remediation scenario for groundwater under the VRP for a non-responsible party is no longer considered a likely alternative for this site, unless vapor emissions concerns can be alleviated by further sampling (either indoor air sampling or collection of groundwater samples directly beneath the building).

Providence appreciates this opportunity to provide environmental services to Donnie Jarreau. Should you have any questions relative to this document, please contact me at (225) 766-7400.

Sincerely,

Milanie Hanks

Melanie Hanks Site Evaluation and Remediation Services Manager Providence Engineering and Environmental Group LLC

Encl: As stated

ENGINEERING Associates, inc. Consulting engineers

CIVIL • ENVIRONMENTAL • LAND SURVEYING

March 27, 2014

LOE2 FECHIPT 2014 HAR 28 PM 1:23

> Project No. 13109 Hand Delivered

Mr. Duane Wilson Louisiana Department of Environmental Quality P.O. Box 4314 Baton Rouge, LA 70821-4314

RE: Submittal of Voluntary Remedial Investigation Application, Partial Voluntary Remedial Action Supplemental Application and Risk Assessment/Corrective Action Program (RECAP) Evaluation Report Drusilla Shopping Center 3458 Drusilla Lane Monroe, Louisiana AI No. 5567

Dear Mr. Wilson:

Submitted herewith please find one original and two copies of a completed Voluntary Remedial Investigation Application and an associated Partial Voluntary Remedial Action Supplemental Application for the captioned site. A check in the amount of \$500 for the required review fee has also been attached.

In addition to the above information, a copy of the RECAP Evaluation Report for the site has been attached for your review. The RECAP evaluation includes a summary of all assessment activities that have been performed at the site by our office and provides calculated site-specific remedial standards for the site. Also included is a survey map, a map showing boring locations, and a legal description describing the portion of property being entered into the Voluntary Remediation Program. Lastly, three electronic copies of a Phase I Environmental Assessment prepared for the site by a prior site consultant have been attached.

|               | Remaulation Services Division |
|---------------|-------------------------------|
| MAR 31 2014   | Manager: 2017 Durver          |
| MAR 31 2017   | TEMPO Task#:                  |
| FY2014 - 25T2 | Desk copy                     |

C.\03-14\13109 wilson 032714

Mr. Wilson

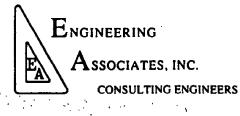
March 27, 2014

We appreciate your assistance in this matter and look forward to receiving your comments regarding the enclosed information. We are also currently preparing a Remedial Action Plan for the site and look forward to discussing details of the plan with you prior to its submittal. Should you have any questions or require additional information, do not hesitate to call.

2

Sincerely,

#### ENGINEERING ASSOCIATES, INC.


Shawn Funderburk Project Manager

C:\03-14\13109\wilson.032714

Stephen J. Burnham, P.E. President

c w/encl

Mr. Donnie Jarreau, Donnie Jarreau Developments, L.L.C. Mr. Alex Knight, Donnie Jarreau Developments, L.L.C. Ms. Laura LeBeouf, Louisiana Department of Environmental Quality



# Voluntary Remediation Program Louisiana Department of Environmental Quality VOLUNTARY REMEDIAL INVESTIGATION APPLICATION

The remedial investigation work <u>plan</u> for this site and the application review fee must be included with this Voluntary Remedial Investigation Application form, as provided in LAC 33:VI.911.A, or this Voluntary Remedial Investigation Application will be considered incomplete and not be accepted for review.

| I. Applicant Information                                                            |                                     |                |                                       |  |  |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------|----------------|---------------------------------------|--|--|--|--|
| Section A: Applicant                                                                |                                     |                |                                       |  |  |  |  |
| Name/ Company Name: Donnie Jarreau Developments, L.L.C.                             |                                     |                |                                       |  |  |  |  |
| Mailing Address: 10604 Coursey                                                      | Mailing Address: 10604 Coursey Blvd |                |                                       |  |  |  |  |
| City: Baton Rouge                                                                   | State:LA                            |                | Zip Code:70816                        |  |  |  |  |
| Contact Person: Donnie Jarreau                                                      |                                     |                |                                       |  |  |  |  |
| Phone No:225-753-3573                                                               |                                     | Fax No:225-753 | -3572                                 |  |  |  |  |
| Email Address:donnie@donniejarreau.com                                              |                                     |                |                                       |  |  |  |  |
| Interest in Property: Prospective                                                   | Buyer                               |                |                                       |  |  |  |  |
|                                                                                     |                                     |                |                                       |  |  |  |  |
| Section P: Co Applicant                                                             |                                     |                |                                       |  |  |  |  |
| Section B: Co-Applicant<br>Name/ Company Name: NA                                   |                                     |                |                                       |  |  |  |  |
| Mailing Address:                                                                    |                                     |                |                                       |  |  |  |  |
|                                                                                     | State:                              |                | Zip Code:                             |  |  |  |  |
| City:<br>Contact Person:                                                            | State.                              |                | 200000                                |  |  |  |  |
| Phone No:                                                                           |                                     | Fax No:        |                                       |  |  |  |  |
| Email Address:                                                                      |                                     | 1 ax 110.      |                                       |  |  |  |  |
| Interest in Property:                                                               |                                     |                |                                       |  |  |  |  |
| Interest in Property.                                                               |                                     |                |                                       |  |  |  |  |
|                                                                                     |                                     |                |                                       |  |  |  |  |
| Section C: Co-Applicant                                                             |                                     |                |                                       |  |  |  |  |
| Name/ Company Name: NA                                                              |                                     |                |                                       |  |  |  |  |
| Mailing Address:                                                                    |                                     |                |                                       |  |  |  |  |
| City:                                                                               | State:                              |                | Zip Code:                             |  |  |  |  |
| Contact Person:                                                                     |                                     | 1              |                                       |  |  |  |  |
| Phone No:                                                                           |                                     | Fax No:        |                                       |  |  |  |  |
| Email Address:                                                                      |                                     |                |                                       |  |  |  |  |
| Interest in Property:                                                               |                                     |                |                                       |  |  |  |  |
|                                                                                     |                                     |                |                                       |  |  |  |  |
| Section D: Current Property Owner (if different form applicants)                    |                                     |                |                                       |  |  |  |  |
|                                                                                     |                                     |                | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
| Name/ Company Name: Garry Lewis Properties                                          |                                     |                |                                       |  |  |  |  |
| Mailing Address: 3458 Drusilla Lane, Suite GCity: Baton RougeState:LAZip Code:70809 |                                     |                |                                       |  |  |  |  |
| Contact Person:Garry Lewis                                                          |                                     |                |                                       |  |  |  |  |
| Phone No:225-930-9996                                                               |                                     | Fax No:NA      |                                       |  |  |  |  |
| Email Address:NA                                                                    |                                     |                |                                       |  |  |  |  |

| II. Site Information                                                                                                                                                                                                                                                                                                                                              |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Agency Interest Number (if exist):5567                                                                                                                                                                                                                                                                                                                            |                                    |
| Site Name:Drusilla Shopping Center                                                                                                                                                                                                                                                                                                                                |                                    |
| Parish:East Baton Rouge                                                                                                                                                                                                                                                                                                                                           |                                    |
| Property Size (acres):+/- 2.3                                                                                                                                                                                                                                                                                                                                     |                                    |
| Physical address or direction and distance from nearest intersection:3458 Drus<br>Baton Rouge, LA 70809                                                                                                                                                                                                                                                           | silla Lane,                        |
| Latitude: 30 ° 10 " 25 '                                                                                                                                                                                                                                                                                                                                          |                                    |
| Longitude: 91 ° 22 " 05 '                                                                                                                                                                                                                                                                                                                                         |                                    |
| Section/Township/Range (attach legal property description):Section 100, Towr                                                                                                                                                                                                                                                                                      | nship 7S, Range 1E                 |
| Adjacent Property Owners (persons listed as owners of the adjacent properties parish tax assessor as of the date on which the voluntary remediation application submitted): DiVincenti Plaza to North. Garry Lewis Properties to East, South, a                                                                                                                   | ion is                             |
| Current Property Use (Describe in detail. Use percentages if more than one us<br>businesses including the following: Family Dollar Store, Radio Shack, Chase I<br>Shoe Repair, Movie Store, vacant tenant space, Drusilla Imports, parking lot a<br>Restaurant. Light commercial businesses comprise approximately 40% of the<br>lot comprises the remaining 60%. | Bank, Darensbourgh<br>nd China Wok |
| Past (historical) Property Use (Describe in detail):Light commercial tenants inc<br>cleaners                                                                                                                                                                                                                                                                      | luding a former dry                |
| Future Property Use (Describe in detail. Use percentages if more than one use current property use are anticipated with the exception of possible occupant ch spaces.                                                                                                                                                                                             |                                    |
| Current Land Use Surrounding Property:Light commercial                                                                                                                                                                                                                                                                                                            | · · ·                              |
| VCP001                                                                                                                                                                                                                                                                                                                                                            | 2 of 4                             |

.

:

.

.

Contaminant Type(s) and Affected Media:Trichloroethene and arsenic in soil and 1,1,1,2-Tetrachloroethane, Hexachloroethane, Tetrachloroethene and Trichloroethene in groundwater.

Applicant(s) must also attach to this form all available historical assessment and or investigation information available for the site, including Phase 1 and 2 Assessments, analytical data, etc.

.

| III. Eligibility Information                                                       |       | ······································ |
|------------------------------------------------------------------------------------|-------|----------------------------------------|
| Permitted Hazardous Waste Unit(s) on site?                                         | ☐ Yes | No No                                  |
| Site Proposed for Listing on the NPL?                                              | Yes   | No                                     |
| Site Listed on the NPL?                                                            | Yes   | No No                                  |
| Any Pending Federal Environmental Enforcement Actions<br>Associated with the Site? | ☐ Yes | No                                     |
| If yes, explain                                                                    |       |                                        |
| Any portion of the site UST Trust Fund Eligible?                                   | Yes   | No                                     |
| If yes, explain                                                                    |       |                                        |
| IV. Type of Voluntary Remedial Action Proposed                                     |       |                                        |
| Voluntary Remedial Action                                                          |       |                                        |

Partial Voluntary Remedial Action (See note below) If Partial Voluntary Remedial Action is checked, the applicant and co-applicants must each complete and attach a Partial Remedial Action Supplemental Application Form.

| V. Certification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All applicants must certify the following with their signature below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |
| I (we) certify that all of the information I (we) have provided in this Vo<br>Application is true and correct to the best of my information, kr<br>understand and agree that I (we) am obligate to update and notify this<br>information that I (we) have provided is misleading or no longer correct<br>(we) understand I (we) am responsible for and agree to reimburse<br>Environmental Quality for all actual direct costs associated with<br>oversight activities of the Department conducted pursuant to LAC 33:<br>limited to, review, supervision, investigation, and monitoring activities. | owledge, and belief. I (we)<br>s application if I (we) learn that<br>ect. I (we) further certify that I<br>the Louisiana Department of<br>reasonable and appropriate |
| Primary Applicant Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date: P-25/13                                                                                                                                                        |
| Co-Applicant Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                                                                                                                                                |
| Co-Applicant Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |

# Voluntary Remediation Program Louisiana Department of Environmental Quality PARTIAL VOLUNTARY REMEDIAL ACTION SUPPLEMENTAL APPLICATION

| If a partial | remediation   | is to b  | e performed,   | one   | each  | of  | this   | form   | must | be | completed | by | the |
|--------------|---------------|----------|----------------|-------|-------|-----|--------|--------|------|----|-----------|----|-----|
| applicant an | nd by each co | o-applic | ant and attacl | hed t | o the | App | olicat | ion Fo | orm. |    |           |    |     |

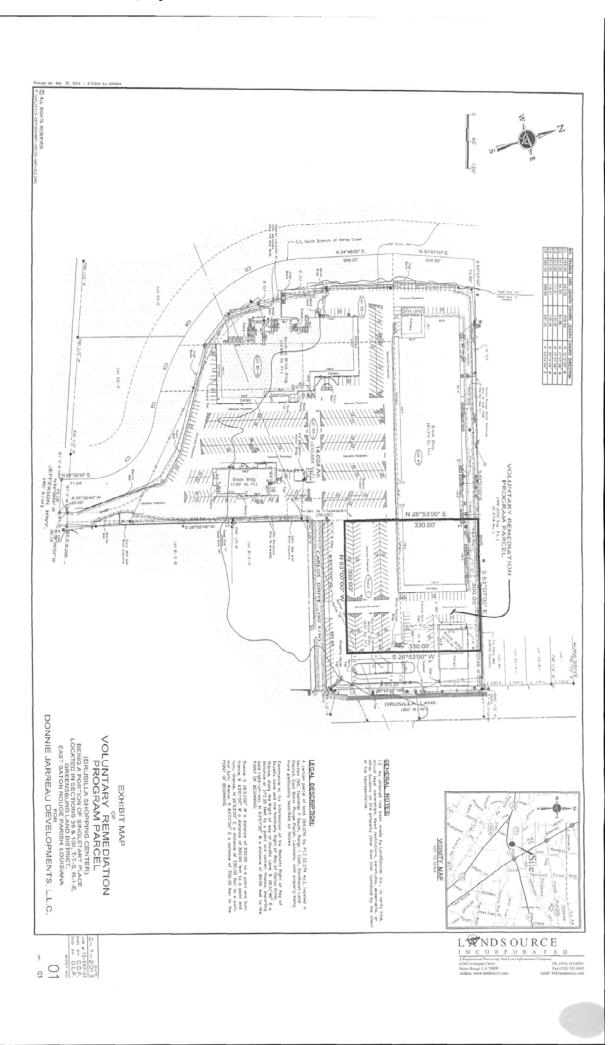
| I. Applicant Information                                                                                   | Margan March      |                      |
|------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| Check One: Applicant Co-Applicant                                                                          |                   |                      |
| Name/ Company Name: Donnie Jarreau Developments, L.L.C.                                                    |                   |                      |
| Agency Interest Number (if one exists): 5567                                                               |                   |                      |
| Site Name: Drusilla Shopping Center                                                                        |                   |                      |
| Interest in Property: Prospective Purchaser                                                                |                   |                      |
|                                                                                                            |                   |                      |
| II. Answer the following questions by checking the appro                                                   | opriate answer    |                      |
|                                                                                                            | Yes               | No                   |
| Were you a generator who generated a hazardous                                                             | les               |                      |
| substance that was disposed of or discharged at the site?                                                  | Yes               | No                   |
| Were you a transporter who disposed of or discharged a hazardous substance or hazardous waste at the site? | 165               |                      |
| Were you a disposer who disposed of or discharged a                                                        | Yes               | No                   |
| hazardous substance or hazardous waste at the site?                                                        |                   |                      |
| Did you contract with someone for transportation or                                                        | Yes               | No                   |
| disposal at the site?                                                                                      |                   |                      |
| III. If you are or were an owner or operator of the site sul                                               | bsequent to the d | isposal of hazardous |
| waste, answer the following questions by checking th                                                       | e appropriate ans | swer                 |
| Were you engaged in the business of generating,                                                            | Yes               | 🗌 No                 |
| transporting, storing, treating, or disposing of a hazardous                                               |                   |                      |
| substance or hazardous waste on or in the site?                                                            |                   |                      |
| Did you knowingly permit any person to make regular use                                                    | Yes               | No                   |
| of the property for disposal of waste?                                                                     | Yes               | No                   |
| Did you knowingly permit any person to use the site for                                                    |                   |                      |
| disposal of a hazardous substance?<br>Did you know or should you have reasonable known that a              | Yes               | ΠNο                  |
| hazardous substance was located in or on the site at the                                                   |                   |                      |
| time right, title, or interest in the site was first acquired by                                           |                   |                      |
| the person and engaged in conduct associating that                                                         |                   |                      |
| person with the discharge or disposal?                                                                     |                   |                      |
| Did you take action that significantly contributed to the                                                  | Yes               | 🗌 No                 |
| discharge or disposal after that person knew or reasonable                                                 |                   |                      |
| should have known that a hazardous substance was                                                           |                   |                      |
| located in or on the site?                                                                                 |                   |                      |

NOTE: If "Yes" is answered to any question, applicant is not eligible for a partial remediation.

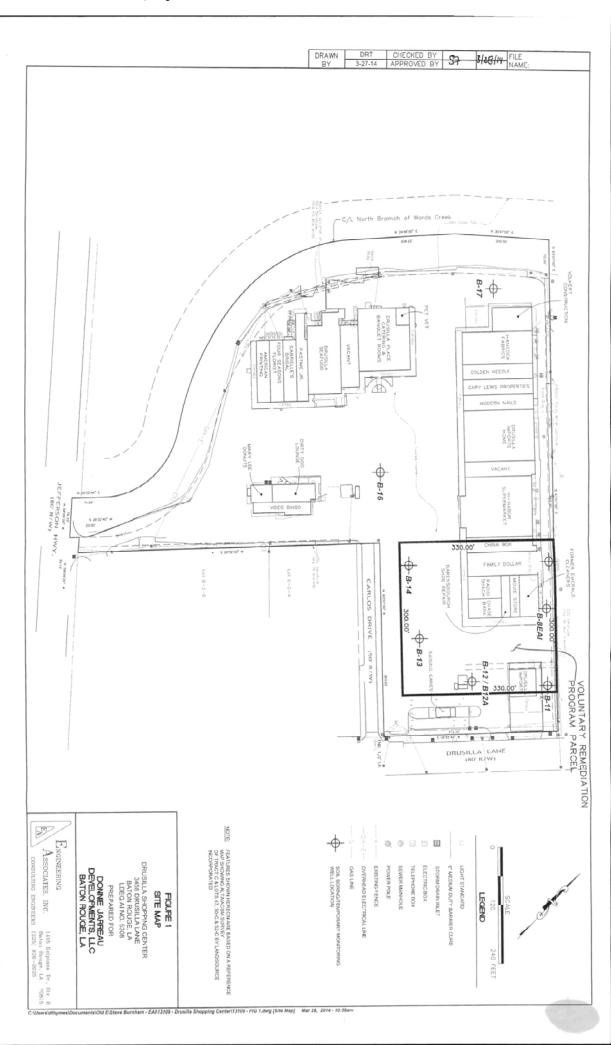
#### V. Certification

All applicants must certify the following with their signature below:

I (we) certify that all of the information I (we) have provided in this Partial Voluntary Remedial Action Supplemental Application is true and correct to the best of my information, knowledge, and belief. I (we) understand and agree that I (we) am obligate to update and notify this application if I (we) learn that information that I (we) have provided is misleading or no longer correct. I (we) further certify that I (we) understand I (we) am responsible for and agree to reimburse the Louisiana Department of Environmental Quality for all actual direct costs associated with reasonable and appropriate oversight activities of the Department conducted pursuant to LAC 33:VI. Chapter 9, including, but not limited to, review, supervision, investigation, and monitoring activities.


| Applicant Signature:    | -11 | Date: 3/25/14 |  |
|-------------------------|-----|---------------|--|
| Co-Applicant Signature: |     | Date:         |  |

#### LEGAL DESCRIPTION:


A certain parcel of land, (99,070 Sq. Ft.) (2.274 Ac.), located in Section 100, Township 7 South, Range 1 East, Southeast Land District, East Baton Rouge Parish, Louisiana, said property being more particularly described as follows:

Commence at the intersection of the Westerly Right of Way of Drusilla Lane and the Northerly Right of Way of Carlos Drive; thence, along the Right of way of Drusilla Lane, N 26°32'40" E a distance of 372.25 feet to a point and corner; thence, departing said right-of-way, N 63°07'00" W a distance of 80.00 feet to the POINT OF BEGINNING;

Thence, S 26°53'00" W a distance of 330.00 to a point and turn; thence, N 63°07'00" W a distance of 300.00 feet to a point and turn; thence, N 26°53'00" E a distance of 330.00 feet to a point and turn; thence, S 63°07'00" E a distance of 300.00 feet to the POINT OF BEGINNING LDEQ-EDMS Document 9247812, Page 10 of 12



LDEQ-EDMS Document 9247812, Page 11 of 12



# **RECEIPT OF CHECK**

| Al Number       | 5567                         |
|-----------------|------------------------------|
| Company Name    | Engineering Associates, Inc. |
| Site Name/      | Drusilla Shopping Center     |
| Phone           |                              |
| Date Received   | 3/31/14                      |
| Date on Check   | 3/27/14                      |
| Check Number    | 20076                        |
| Amount Received | \$500.00                     |

# **Check one Media:**

| Accident Prevention | Ground Water      | Radiation       |
|---------------------|-------------------|-----------------|
| 🔲 Air Quality       | 🔲 Hazardous Waste | 🔲 Solid Waste   |
| Air Toxics          | X Inactive and    | Underground     |
| _                   | Abandoned Sites   | Storage Tanks   |
| Asbestos and Lead   | 🔲 Multi-Media     | Water Resources |
|                     |                   |                 |

.

### Comments:

VRP application fee

# Initials:

vrt

| PARTMENT OF ENVIRONMENTAL QUAL<br>FIELD INTERVIEW FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INSPECTION DATE: 3/14/17 TIME OF AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ARTURE DATE: <u>3/14/17</u> TIME OF DEPAR<br>i 1/a Village, L.L.C. PH<br>a Lane <u>Batom Rouge</u><br>parish NAME:<br><u>parish NAME:</u><br><u>parish NA</u> | RIVAL: 9:00 4m<br>TURE: 10:15 Am<br>#: 235-753-3573<br>EBR<br>-A 70816<br>(ZIP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SER: Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DT RESPONSIBLE OFFICIAL (If different from above):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| al at woodside handfill. Collected and results 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vities<br>to 3 put below<br>ormer dry<br>placed in<br>onfirmatory<br>occined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EXPLANATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CORRECTED?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BLYES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Buesham<br>ARILY INDICATE AGREEMENT WITH INSPECTOR'S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATED OBSERVATIONS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CROSS REFERENCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ATTACHMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PARISH NAME:<br>PARISH NAME:<br>PA |

Interpreted as a final determination contained on this form reflects only the preliminary observations of the inspector(s). It should not be interpreted as a final determination by the Department of Environmental Quality or any of its officers or personnel as to any matter, including, but not limited to, a determination of compliance or lack thereof by the facility operator with any requirements of statutes regulations or permits. Each day of non-compliance constitutes a separate violation of the regulations and/or the Louisiana Environmental Quality Act.

PAGE \_\_OF\_\_



# RECEIVED

April 25, 2017

MAY 01 2017

**Remediation Division** 

Project No. 13109

Mr. Percy V. Harris, Administrator Remediation Division P.O. Box 4314 Baton Rouge, LA 70821-4314

RE: Summary of Remediation Activities Drusilla Shopping Center 3458 Drusilla Lane Baton Rouge, LA (East Baton Rouge Parish) AI No. 5567

|       | Remediation Division     |   |
|-------|--------------------------|---|
| Mana  | ager:                    | _ |
| Team  | Leader: Burmercaye       |   |
| AI #: | 5567 0                   |   |
| Log#  | F42017-2253              |   |
| TEM   | PO Task #:               |   |
|       | Desk Copy File Room: TAS |   |

Dear Mr. Harris:

Submitted herewith please find three copies of a summary of remediation activities recently performed at the captioned site. This submittal is on behalf of our client, Drusilla Village, L.L.C.

A Voluntary Remedial Action Plan for the captioned site was prepared by our office in April, 2015, as revised in July, 2015. The Plan was approved for implementation through correspondence from the Louisiana Department of Environmental Quality (LDEQ) dated May 31, 2016. Proposed remediation activities included removal and disposal of a relatively small quantity of impacted soil from the site. Implementation of remediation activities was delayed for several months to accommodate several new tenants in Drusilla Shopping Center and in order to coordinate soil excavation activities with planned roadway replacement activities.

The scope of the remediation activities performed at the site, as approved in the July, 2015 Voluntary Remedial Action Plan, included excavation and disposal of soils from a 10' x 10' area to a depth of three feet. The area requiring excavation was located in the vicinity of previously installed boring B-8EAI. The boring and excavation area are shown on the attached Figure 4, as included in the Voluntary Remedial Action Plan. The constituent of concern within the impacted area was limited to trichloroethene.

CIVIL • ENVIRONMENTAL • LAND SURVEYING

C:\04-17\13109\harris.042517 1415 Delplaza Drive, Ste. B Baton Rouge, LA 70815 Telephone: 225.926.2025

Facsimile: 225.926.2033

Mr. Harris

Soil excavation and disposal activities were performed on March 14, 2017. The asphalt pavement over the proposed excavation area was removed from a 12' x 12' area centered over formerly installed boring B-8EAI. Excavated soils beneath the pavement were placed in a dump truck as they were excavated. The 12' x 12' area was excavated to a depth of approximately 3.5 feet. The area of excavation was enlarged slightly (relative to an approved area of 10' x 10') in an attempt to ensure that all impacted soils were removed during the excavation.

2

Upon completion of excavation activities, soil samples were collected from the bottom of the excavation and from all four sidewalls of the excavation. A photoionization detector (PID) was used to field screen the samples. PID readings ranged from 5.6 ppm in the "Confirmatory Bottom" sample to 38.9 ppm in the "Confirmatory West" sample.

Confirmatory soil samples collected for laboratory analysis included a sample from the bottom center of the excavation (Confirmatory Bottom) and samples from all four sidewalls of the excavation (Confirmatory North, East, South and West). All samples were collected and preserved in accordance with EPA Method 5035 and in accordance with the Sampling and Analysis Plan (SAP) and the Quality Assurance/Quality Control (QA/QC) plan prepared for the site. The health and safety procedures included in the Health and Safety Plan prepared for the site were also adhered to.

QA/QC samples were submitted to the laboratory in accordance with the QA/QC plan. The QA/QC samples included a duplicate sample (Confirmatory Dup Bottom), a trip blank, a field blank, and an MS/MSD sample. All samples were collected in laboratory supplied containers, placed on ice, and submitted to SGS Acutest Laboratories under chain-of-custody documentation. The samples were analyzed for Volatile Organic Compounds (VOCs) by EPA Method 8260 B.

Laboratory analysis results are provided on the attached laboratory analysis report (Attachment A) and are summarized on the attached Table 1. Only VOC constituents that exhibited constituent concentrations above laboratory detection limits are listed on Table 1.

As shown on Table 1, no constituents in the confirmatory soil samples exceeded Limiting Industrial Soil Remedial Standards (Soil RS) as previously established for the site. The RECAP Table 1 Soil Screening Standards (Soil SS) for tetrachloroethylene, trichloroethylene, and vinyl chloride were exceeded in several of the confirmatory soil samples. As such, filing of a Conveyance Notice documenting the exceedances will be required.



Mr. Harris

A total of 23.17 tons of soil were excavated from the site. The soil was transported to Waste Management's Woodside Landfill, Walker, Louisiana for disposal. The soils were transported by Kent Environmental, Port Allen, LA. A copy of the associated waste disposal manifest has been provided in Attachment B.

2

Upon receipt of acceptable laboratory analysis results, the excavation area was backfilled with clean, imported material. The area over the excavation was then paved with concrete. Adjacent areas unrelated to site remediation activities were also paved with concrete. Photographs of the excavation area taken during performance of excavation activities and following replacement of the pavement surface have been provided in Attachment C.

We appreciate your assistance in this matter. Should you have any questions or require additional information, do not hesitate to call.

Sincerely,

ENGINEERING ASSOCIATES, INC.

Stephen J. Burnham, P.E. President

C w/encl Mr. Donnie Jarreau, Drusilla Village, L.L.C. Mr. Alex Knight, Drusilla Village, L.L.C. Ms. Celeste Bonnecaze, Louisiana Department of Environmental Quality



# Gilmar Marine Services, Inc. Preliminary Assessment Report Baton Rouge, East Baton Rouge Parish, Louisiana

October 2007

Prepared for: U.S. Environmental Protection Agency 1445 Ross Avenue Dallas, Texas 75202

USACE Contract: DACW56-02-G-1001 USACE Task Order No.: 0008 E & E Project No.: 001562.CU08.02.05

> Prepared by: Ecology & Environment, Inc. Dallas, Texas



1412 Main Street, Suite 1500 Dallas, Texas 75202 Tel: (214) 245-1000 Fax (214) 245-1001

# GILMAR MARINE SERVICES, INC. PRELIMINARY ASSESSMENT REPORT BATON ROUGE, EAST BATON ROUGE PARISH, LOUISIANA

# TABLE OF CONTENTS

| Se  | <u>ction</u> <u>Page</u>                           |
|-----|----------------------------------------------------|
| 1.  | INTRODUCTION1-1                                    |
| 2.  | SITE BACKGROUND                                    |
| 2.1 |                                                    |
| 2.2 | SITE DESCRIPTION/OWNERSHIP HISTORY                 |
| 2.3 | SITE OPERATIONS AND WASTE CHARACTERISTICS          |
| 2.4 | PREVIOUS INVESTIGATIONS AND REGULATORY HISTORY 2-3 |
|     |                                                    |
| 3.  | GROUNDWATER MIGRATION PATHWAY                      |
| 3.1 | GEOLOGY AND HYDROGEOLOGY                           |
| 3.2 | GROUNDWATER RECEPTORS                              |
| 3.3 | GROUND WATER SUMMARY                               |
| 4.  | SURFACE WATER MIGRATION PATHWAY                    |
| 4.1 |                                                    |
| 4.2 | SURFACE WATER RECEPTORS 4-1                        |
| 4.3 | SURFACE WATER SUMMARY 4-2                          |
| 5   | SOIL EXPOSURE AND AIR PATHWAYS                     |
| 5.1 |                                                    |
| 5.2 |                                                    |
| 5.3 |                                                    |
| 6.  | SUMMARY 6-1                                        |
|     | REFERENCES                                         |
| 7.1 |                                                    |
| 7.2 | ONLINE REFERENCES                                  |

#### LIST OF TABLES

| Table | <u>P</u>                                              | age |
|-------|-------------------------------------------------------|-----|
| 5-1   | Population and Wetland Acreage Within a 4-Mile Radius | 5-2 |

# LIST OF APPENDICES

- 1. Site Location Map
- 2. Site Aerial
- 3. Site Sketch
- 4. Site Drainage Map
- 5. Groundwater Withdrawal Wells Located Within a 4-Mile Radius
- 6. Photographic Documentation
- 7. Louisiana Department of Environmental Quality Electronic Document Management System Records for AI 8003
- 8. Facility Owner Information
- 9. Property Ownership Documentation
- 10. Records of Communication

# ACRONYM LIST

| <u>Acronym</u>       | Definition                                              |
|----------------------|---------------------------------------------------------|
|                      |                                                         |
| AI                   | Agency Identification                                   |
| BGS                  | below ground surface                                    |
| CERCLA               | Comprehensive Environmental Response, Compensation, and |
|                      | Liability Act                                           |
| ft <sup>3</sup> /sec | cubic feet per second                                   |
| E & E                | Ecology and Environment, Inc.                           |
| ECOS                 | <b>Environmental Conservation Online System</b>         |
| EDMS                 | <b>Electronic Document Management System</b>            |
| EPA                  | United States Environmental Protection Agency           |
| GMS                  | Gilmar Marine Services, Inc.                            |
| LDEQ                 | Louisiana Department of Environmental Quality           |
| LDNR                 | Louisiana Department of Natural Resources               |
| LDOTD                | Louisiana Department of Transportation and Development  |
| LOSCO                | Louisiana Oil Spill Coordinators Office                 |
| MRT                  | Mississippi River Trail                                 |
| MSL                  | mean sea level                                          |
| NRCS                 | National Resource Conservation Service                  |
| NWI                  | National Wetland Inventory                              |
| n.d.                 | no date                                                 |
| NPL                  | National Priorities List                                |
| NPDES                | National Pollutant Discharge Elimination System         |
| NWUDB                | National Water Use Database                             |
| PA                   | Preliminary Assessment                                  |
| ppm                  | parts per million                                       |
| WCS                  | Water Control Section                                   |
| WSS                  | Web Soil Survey                                         |
| USACE                | United States Army Corp of Engineers                    |
| USCB                 | United States Census Bureau                             |
| USDA                 | United States Department of Agriculture                 |
| USFWS                | United States Fish and Wildlife Service                 |
| USGS                 | United States Geological Survey                         |
|                      |                                                         |

# GILMAR MARINE SERVICES, INC. PRELIMINARY ASSESSMENT REPORT BATON ROUGE, EAST BATON ROUGE PARISH, LOUISIANA

#### 1. INTRODUCTION

Ecology and Environment, Inc. (E & E) was tasked by the United States Army Corp of Engineers (USACE) Tulsa District to conduct a Preliminary Assessment (PA) of the former Gilmar Marine Services, Inc. (GMS), barge cleaning and servicing facility (Site), located in East Baton Rouge Parish, Louisiana for the U.S. Environmental Protection Agency (EPA) Region 6 under Contract No. DACW56-02-G-1001.

The specific goals for the GMS Site PA, identified by the EPA, are to:

- Determine the potential threat to public health or the environment posed by the site;
- Determine the potential for a release of hazardous constituents into the environment; and
- Determine the potential for placement of the site on the National Priorities List (NPL).

Completion of the PA included reviewing available site information; collecting information on potential receptors within the target distance limits; determining regional geology, groundwater, surface water, and population characteristics; and conducting a site drive by. This document includes a discussion of site background information (Section 2), a discussion of migration/exposure pathways and potential receptors for groundwater (Section 3), surface water (Section 4), soil and air (Section 5), Summary (Section 6), and a list of references (Section 7).

# 2. SITE BACKGROUND

# 2.1 SITE LOCATION

| Site Name:                              | Gilmar Marine Services (GMS)                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agency Interest (AI) Number(s): AI 8003 |                                                                                                                                                                                                                                                                                                                                     |
| Additional Identification:              | National Pollution Discharge Elimination System (NPDES)<br>Permit No. LA0045705                                                                                                                                                                                                                                                     |
| Location:                               | 1500 River Road,<br>Baton Rouge, Louisiana, 70802                                                                                                                                                                                                                                                                                   |
| Latitude:                               | 30° 25' 59" North (N)                                                                                                                                                                                                                                                                                                               |
| Longitude:                              | 91° 11' 34" West (W)                                                                                                                                                                                                                                                                                                                |
| Legal Description:                      | Batture Lots T, D, C and R, subdivision of the A. Strenzke and<br>E. Witting, subdivision Magnolia, Frontage 874.50 feet on the<br>east side of the Mississippi River, North Line of 493.53 feet,<br>South Line of 436.03 feet, located in Section 052, Township 07<br>South, Range 12 East, of East Baton Rouge Parish, Louisiana. |
| Site Owner:                             | W. W. Minerals, Inc.                                                                                                                                                                                                                                                                                                                |
| Site Contact:                           | James Ervin, President<br>WW Minerals, Inc.<br>8126 One Calais Ave., Suite 1C<br>Baton Rouge, LA 70809                                                                                                                                                                                                                              |

#### 2.2 SITE DESCRIPTION/OWNERSHIP

The Site is located near downtown Baton Rouge, East Baton Rouge Parish, Louisiana (Appendix 1). The Site is situated in the batture (the elevated river bed between the Mississippi River Levee system and the river itself). The Site is bordered to the north and south by batture, to the west by the Mississippi River, and to the east by the Mississippi River Levee, River Road, followed by light industrial and commercial property and residential areas (Appendix 2). The Site operated from 1974 to the late-1980s by GMS. The property upon which the Site was located is currently owned and maintained by W. W. Minerals, Inc.

#### 2.3 SITE OPERATIONS AND WASTE CHARACTERISTICS

A review of the documents for AI 8003 filed in the Louisiana Department of Environmental Quality (LDEQ) Electronic Document Management System (EDMS) indicated the GMS operated as a facility for the removal of remaining cargo, cleaning, repair, and/or certification of barges from 1975 to the late 1980's. A table of the documents available for AI 8003 is included in Appendix 7. According to the GMS NPDES permit application, barges were washed with water from the Mississippi River or from Baton Rouge Water Works for cleaning operations (Document 15855341, LDEQ EDMS, no date [n.d.]). Waste wash-fluids were removed from barges that contained residual petroleum products and were transferred to wash receiving tank(s). Fluids from the receiving tank were transferred to an oil-water separator. Separated oil was transferred to storage tank(s) for subsequent disposal. The remaining wash water was transferred to check tanks to ensure oil and grease concentrations were below the stated maximum of 15 parts per million (ppm) prior to discharge to the Mississippi River. The quality check consisted of a visual inspection for an oily sheen and testing the pH to ensure it was between 7.8 and 8.2. The pH was adjusted prior to discharge if necessary. Waste wash fluids from barges containing residual products other than petroleum products, specifically methanol, styrene, toluene, benzene, ethylene dichloride, and/or carbon tetrachloride, were supposedly stripped

directly to storage tanks for subsequent disposal (Document 21720825, LDEQ EDMS, n.d.). The number and size of tanks at the facility, as determined from GMS submitted permits, varied. In their January 1975 NPDES permit, GMS indicated there would be two 12,000 gallon vacuum tanks, one 24,000 gallon wash receiver tank, one 9,000 gallon oil/water separator and four 12,000 gallon storage tanks (Document 15855357, LDEQ EDMS, n.d.). In their Air Emissions permit, approved in February 1975, GMS identified ten storage tanks of unknown size in addition to the oil/water separator. The figures identified the ten tanks as: styrene; toluene/benzene; oils; gas; kerosene/jet fuel; coal tar solutions; ethylene dichloride; carbon tet (tetrachloride); methanol; and slop tank. The Figures or the permit indicated all fluids went through the separator, then through a manifold to the appropriate tank (Document 21720825, LDEQ EDMS, n.d.). Since the facility was located within in the batture, operations at the facility were suspended when/if the Mississippi River stage reached an elevation of 38.5 feet above mean sea level (MSL). The tanks and separation equipment were located in a 120-foot by 220-foot secondary containment area consisting of a 1-foot deep earthen depression. The grade surrounding the secondary containment was at 39 feet above MSL. Between 1997 and 2007, the Mississippi River has flooded the secondary containment and the surrounding area of the batture at least six times, usually 2 to 3 weeks per event (USACE WCS, n.d.).

#### 2.4 PREVIOUS INVESTIGATIONS AND REGULATORY HISTORY

In August of 1975, the Louisiana Stream Control Commission granted a treated waste water discharge permit to GMS, provided these wastes were only associated with oil-barge cleaning operations. All other wastes streams were to be disposed of offsite. (Document 15855129, LDEQ EDMS, n.d.).

In December of 1980, the Louisiana Department of Natural Resources (LDNR) Office of Environmental Affairs issued a Notice of Violation and Compliance Order (Document 15855030, LDEQ EDMS, n.d.). The order stated that on December 18, 19080, subsequent to complaints of strong and objectionable odors in the area, LDNR personnel conducted an inspection of the GMS facility. During the inspection LDNR personnel observed:

- Oil and other chemicals discharging to a drain that flows directly to the Mississippi River;
- Oil and chemical wastes had overflowed directly onto the batture, which would drain into Mississippi River as an unpermitted discharge;
- Evidence on the barge decks indicated oil and chemical wastes had discharged directly into the Mississippi River;
- The holds of the work barge were used to store waste water when the USCG had previously, specifically designated that barge unsuitable for this purpose due to prior collisions;
- Evidence of transfer of ethyl acrylate to storage tanks when GMS facility was never granted a permit to store hazardous materials;
- The GMS waste water treatment system was contaminated by various organic compounds; and
- GMS had constructed and operated equipment, which included but was not limited to steam boilers, for which no air emission permit had been granted.

Subsequent to these findings, the GMS was ordered to:

- Immediately cease all discharge of contaminated wastewater, oil, and chemicals to surface drainage and the Mississippi River, specifically including the discharge location identified in the State Wastewater Discharge Authorization and NPDES Permit No. LA0045705 and all other areas where discharges may occur;
- Immediately initiate clean-up actions to remove and properly dispose of contaminated soils on the batture around the storage tanks and wastewater treatment facility by January 16, 1981 to prevent future contaminated runoff from occurring;
- Install blind flanges on all valves and hoses on the barges and catch basins or sumps on routine connect/disconnect points to contain leaks or spills;
- Repair/install combing and ensure drainage to a sump and collection system to contain all spills and leaks;

- The wastewater treatment system must be cleaned to remove all contaminating chemicals, chemical analysis must be performed to demonstrate removal, and system must be inspected by LDNR Division of Water Control personnel before authorization for future discharges will be granted or considered;
- The Air Quality Division granted a variance to allow GMS to continue operation upon the condition that clean-up procedures have first priority on the site, until January 22, 1981, at which time a revised air emission permit will be considered by the Environmental Control Commission.

On April 7, 1981, GMS submitted an air emissions permit that listed emissions from two boilers and carbon absorber outlet on barges, vent on oil/water separator, and tank vent through carbon filter drum (Document 21720703, LDEQ EDMS, n.d.).

On January 27, 1983, LDNR conducted an inspection to ensure the facility was not discharging per the requirements of their cease and desist order. Their inspection noted NPDES Permit No. LA0045705 was currently cancelled. The inspectors noted the facility was down but would resume operations next week. They also noted that waste water was routed to six tanks (Document 15855249, LDEQ EDMS, n.d.).

On January 4, 1984, LDNR conducted an inspection of the GMS the facility. They noted barges present, but there were no personnel or pumps on barge. Four tanks had contents. They noted the secondary containment seemed inadequate, but did not note any ground contamination (Document 15855248, LDEQ EDMS, n.d.).

In April of 1988, the Louisiana Department of Environmental Quality (LDEQ) Office of Water Resources received information from aerial surveillance that indicated potential leachate was entering the Mississippi River from its east bank, downstream of Interstate 10. A May 10, 1988, inspection located several leachate streams approximately 100 yards from the GMS tanks, but the LDEQ inspector noted these streams are normal as the Mississippi River recedes and ponded water drains through the subsoil. No sheen or volatile emissions were noted. LDEQ stated their intention to collect samples for analysis of volatile organic compounds if the leachate stream continued, but no such sampling or analysis was noted. The LDEQ inspector noted two "XL" Railroad (RR) car tanks (one <sup>3</sup>/<sub>4</sub> full, one 1/3 full), four "med" RR-car tanks (one <sup>3</sup>/<sub>4</sub> full and rest less full) and one smaller tank (contents not checked). The LDEQ inspector also noted there were no signs of leakage or residual contamination on the ground. Since the site appeared to be inactive, the LDEQ inspector recommended the site be turned over to the LDEQ Inactive and Abandoned Sites program (Document 15855037, LDEQ EDMS, n.d.).

In May of 1995, LDEQ conducted an inspection and noted the tanks and other facility components were not present. A worker at Home Oil (facility located across the street from GMS) stated the GMS facility has not operated for ten years. (Document 21721026, LDEQ EDMS, n.d.).

W. W. Minerals, Inc., purchased the property upon which the GMS facility was located in November of 1984 (Appendix 9). James O. Ervin, president of W. W. Minerals, Inc., stated they have never operated a facility on this property, but they allow a neighboring facility to anchor barges along the property. W. W. Minerals, Inc., hired an environmental contractor to dispose of the contents of the tanks and to scrap the tanks around 1990. Mr. Ervin did not observe and was not aware of any residual contamination stemming from GMS operations, but he has seen local dumping of old white goods and stumps on the property (Appendix 10).

### 3. GROUNDWATER MIGRATION PATHWAY

### 3.1 GEOLOGY AND HYDROGEOLOGY

The Site is located in a seasonally flooded palustrine wetland, as defined by the National Wetland Inventory (NWI), that is forested by broad leaf deciduous - woody angiosperms closer to the levee and grades to areas of scrub-shrub, dominated by woody vegetation less than 20 feet tall, and other persistent emergent (erect, rooted, herbaceous hydrophytes) vegetation until it reaches the lower perennial riverine system of the Mississippi River (USFWS NWI, n.d.).

The soils underlying the site consist of: the Convent series soils (35%), which are typified by a silty alluvium; and the Robinsonville series soils (55%), which are typified by a fine sandy, loamy alluvium. These soils were formed as natural levees of the Mississippi River and persist for more than 80 inches before more consolidated sediments are encountered. They form convex slopes and have a moderate to very high capacity to transmit water (0.6 to 6.0 inches per hour) and other surface fluids (USDA NRCS WSS, n.d.). The site is bounded to the east by the Mississippi River levee, which is reworked and contains manually deposited material. These soils are a worked mix of low-permeability, low-shear, compacted soils and additives. Underlying these soils are additional Holocene natural levee deposits characterized by gray and brown silt, silty clay, some very fine sand, and the Prairie Terrace -Loess Pleistocene deposits characterized by tan to reddish brown massive silt with some clay and minor amounts of very fine sand (USGS, 1998).

The Baton Rouge fault, a listric normal fault and part of a regional east-west trending fault zone, traverses east-west immediately south of the site. The Baton Rouge fault is recognized as a major barrier to groundwater flow. Freshwater deep aquifers, primarily the "1500-foot" and "1700-foot" sands of the Southern Hills aquifer system, north of the fault serve most of the area's the municipal water supply and are in juxtaposition with the Mississippi River Alluvial aquifer system and localized shallow sand aquifers that are used south of the GMS site and the Baton Rouge Fault, (Tomaszewski, 1996).

3-1

The Southern Hills aquifer system is composed of Pleistocene aged alluvial and terrace deposits. The sedimentary sequences that make up the aquifer system are subdivided into several aquifer units separated by confining beds. Northward within southeast Louisiana, fewer units are recognized because some younger units pinch out and some clay layers present to the south disappear. Where clay layers are discontinuous or disappear, aquifer units coalesce. The aquifers are moderately well, to well sorted, and consist of fine sand near the top, grading to coarse sand and gravel in lower parts and are generally confined by silt and clay layers. The deposits that constitute the individual aquifers are not readily differentiated at the surface and act as one hydraulic system that can be subdivided into several hydrologic zones in the subsurface. The Mississippi River Valley is entrenched into the Pleistocene strata in the western part of the system, resulting in water movement between the river, the shallow sands, and the Pleistocene aquifers (Buono, 1983). Recharge occurs primarily by the direct infiltration of rainfall in interstream, upland outcrop areas, by the movement of water between aquifers, and between the aquifers and the Mississippi River. The hydraulic conductivity varies between 10-200 feet/day. The maximum depths of occurrence of freshwater in the Southern Hills range from 350 feet above sea level, to 1,100 feet below sea level. The range of thickness of the fresh water interval in the Southern Hills is 50 to 1,100 feet (Boniol, 1989).

The Mississippi River alluvium consists of fining upward sequences of gravel, sand, silt, and clay. The aquifer is poorly to moderately well sorted, with fine-grained to medium-grained sand near the top, grading to coarse sand and gravel in the lower portions. It is confined by layers of silt and clay of varying thicknesses and extent (Smoot, 1989). The Mississippi River Alluvial aquifer consists of two distinct components; valley trains and meander-belt deposits which are closely related hydrologically. The Mississippi River Alluvial aquifer is hydraulically connected with the Mississippi River and its major streams. Recharge is accomplished by direct infiltration of rainfall in the river valley, lateral and upward movement of water from adjacent and underlying aquifers, and overbank stream flooding. The amount of recharge from rainfall depends on the thickness and permeability of the silt and clay layers overlying it. Water levels fluctuate seasonally in response to precipitation trends and river stages. Water levels are generally within 30 to 40 feet of the land

surface and movement is downgradient and toward rivers and streams. Natural discharge occurs by seepage of water into the Mississippi River and its streams, but some water moves into the aquifer when stream stages are above aquifer water levels. The hydraulic conductivity varies between 10-530 feet per day. The maximum depths of occurrence of freshwater in the Mississippi River Alluvial range from 20 feet below sea level, to 500 feet below sea level. The range of thickness of the fresh water interval in the Mississippi River Alluvial is 50 to 500 feet (Boniol, 1989).

### 3.2 GROUNDWATER RECEPTORS

The Southern Hills aquifer system is the primary aquifer supplying public water for the Baton Rouge area. Most East Baton Rouge Parish and West Baton Rouge Parish withdrawals are from deep aquifers such as the "1500-foot" and "1700-foot" sands which are pumped for 20.97 million gallons per day for public supply. South of the GMS Site and the Baton Rouge Fault, the Mississippi River Alluvial aquifer system and localized shallow sand aquifers are used. Public wells supply 99.3% of the population in East Baton Rouge Parish and 97.8% of the population in West Baton Rouge Parish, with the remainder of water for public consumption coming from domestic water wells. Surface water is not used for public consumption in either parish (USGS NWUDB, n.d.).

Forty (40) public supply and 17 domestic drinking water wells have been identified within a 4-mile radius of the site. In addition to these wells, there are 33 industrial use wells, including two power generating and three rig supply wells, seven irrigation wells, two stock wells, and 46 recovery wells within a 4-mile radius of the site (Appendix 3). The nearest well, located 0.23 mile southeast of the site, is a domestic well that withdraws from the shallow sands of the Baton Rouge area at 280 foot below ground surface (BGS). It is not known if this well is still in use. The next closest wells are two public supply wells, located 1.1 miles to the north, which withdraw from the Southern Hills aquifer at a depth of over 2,200 feet BGS.

### 3.3 GROUND WATER SUMMARY

The permeable soils below the site would allow contaminants, if present, to flow to local ground water and the convex slopes tend to encourage leaching towards the Mississippi River. Between 1997 and 2007, the Mississippi River has flooded the secondary containment and the surrounding area of the batture at least six times, usually 2 to 3 weeks per event (USACE WCS, n.d.). This flooding would tend to saturate and then flush the soils below the site. Since the site is adjacent to the river and is bounded by the Mississippi River Levee to the east, near surface leachates flow into the Mississippi River. With the exception of the one domestic well 0.23 mile from the site, the potential of groundwater drinking source contamination is low, and based on public drinking water distribution, this well may no be longer used.

### 4. SURFACE WATER PATHWAY

### 4.1 HYDROLOGIC SETTING

Drainage from the facility flows west for 195 feet through a NWI defined wetland to the Mississippi River, though this distance varies with the stage of the river. In 2005, the flow rates of the Mississippi River varied between a maximum high of 1,170,000 cubic feet per second ( $ft^3/sec$ ) in February to a low of 166,000  $ft^3/sec$  in August (USACE WCS, n.d.).

### 4.2 SURFACE WATER RECEPTORS

Surface water supplies no water for public consumption in either East Baton Rouge Parish or West Baton Rouge Parish, but did account for 22.59% of industrial use, 7.14% of livestock consumption in East Baton Rouge Parish and for 100% of aquaculture use, 33.33% of livestock consumption in West Baton Rouge Parish (USGS NWUDB, n.d). The nearest surface water intake, the Dow Chemical Surface Water Intake, Public Water Supply ID: 2047003, is located 19.3 miles downstream of the site (Louisiana Oil Spill Coordinators Office [LOSCO], 1999).

The Mississippi River is primarily used for transportation in the vicinity of the Site, though some recreational fishing may occur along its banks. The river currents are typically too swift for recreational watercraft. As previously stated, the site is located in a seasonally flooded palustrine wetland, as defined by the NWI, within the batture of the Mississippi River. There are 10,646 acres of NWI defined wetlands, including the permanently flooded riverine unconsolidated bottom of the Mississippi River, within 15 miles downstream of the site (USFWS NWI, n.d.). Threatened and endangered species potentially located within East Baton Rouge and West Baton Rouge Parishes include the: Bald Eagle (*Haliaeetus leucocephalus*); West Indian Manatee (*Trichechus manatus*); Inflated Heelsplitter Mussel (*Potamilus inflatus*); Gulf Sturgeon (*Acipenser oxyrinchus desotoi*); and Pallid sturgeon (*Scaphirhynchus albus*). There are no

identified critical species habitats located within a 20-mile radius of the site (USFWS Environmental Conservation Online System [ECOS], n.d.).

### 4.3 SURFACE WATER SUMMARY

The NWI wetlands in and around the site show no signs of stressed vegetation. A LDEQ investigation of several leachate streams approximately 100 yards from the GMS tanks in 1998 did not detect any volatile organic emissions or sheen in the streams and noted these streams are normal as the Mississippi River recedes and ponded water drains through the subsoil (Document 15855037, LDEQ EDMS, n.d.). There are no drinking water intakes within 15 miles downstream of the site. There are numerous wetlands along the Mississippi River, and five federally designated threatened and endangered species are found in East Baton Rouge Parish and West Baton Rouge Parish. Primary targets include the fishery in the Mississippi River, the wetlands associated with the Mississippi River, and the habitats of threatened and endangered species in East Baton Rouge Parish and West Baton Rouge Parish River, the wetlands associated with the Mississippi River, and the habitats of threatened and endangered species in East Baton Rouge Parish and West Baton Rouge Parish and West Baton Rouge Parish River.

### 5. SOIL EXPOSURE AND AIR PATHWAYS

### 5.1 PHYSICAL CONDITIONS

As previously noted, the documented air emission point sources at the GMS facility, specifically the two boilers and carbon absorber outlet on barges, the vents on the oil/water separator, vacuum tanks and storage tanks, do not appear to be present at the facility. Odor complaints were made during GMS facility operations between 1980 and 1983, but there have been no documented complaints or investigations involving the site since that time. The current property owner had the tanks and equipment, along with any residual contents, disposed of in 1990. Aerial photographs (Appendix 2) and photographs taken at the perimeter of the facility (Appendix 6) confirm that the tanks and larger components have been removed and the reported former location of the tanks and secondary containment was overgrown with woody vegetation. Sampling and analysis would be required to determine the presence of residual subsurface contamination, but there is no stressed vegetation, discoloration or sheen on site waters, or other environmental indicators that would indicate the presence of significant pollution point sources.

### 5.2 SOIL AND AIR RECEPTORS

The 2006 population estimate from the United States Census Bureau (USCB) is 411,417 for East Baton Rouge Parish and 22,463 for West Baton Rouge Parish. The population within a four-mile radius of the facility, as determined from the USCB 2000 (USCB, n.d.), is presented in Table 5-1.

### Table 5-1

| Distance Ring (Miles) | Population <sup>1</sup> | Wetlands Acreage <sup>2</sup> |
|-----------------------|-------------------------|-------------------------------|
| On Site               | 0                       | 7.1                           |
| 0.00 - 0.25           | 0                       | 80.2                          |
| 0.25 - 0.50           | 777                     | 198.6                         |
| 0.50-1.0              | 5,565                   | 451.7                         |
| 1.0 - 2.0             | 23,268                  | 1213.2                        |
| 2.0 - 3.0             | 28,052                  | 1,655.3                       |
| 3.0 - 4.0             | 32,963                  | 2,297.0                       |
| Total 0.0-4.0         | 90,625                  | 5,963.1                       |

1) USCB 2000 Census as determined via Landview 5

2) Includes riverine, permanently flooded wetlands

Source: Ecology & Environment, inc. 2007

The Mississippi River Trail (MRT) public bike path is present atop the levee along the east boundary of the property. There is no fence or other barriers to public access. Commercial properties, specifically Home Oil Company, the Baton Rouge Warehouse (owned by Garig Warehouse, Inc.), and a parking lot are located approximately 600 feet east of the site. An East Baton Rouge Parish Housing Authority Apartment complex is located approximately 1,400 feet northeast of the site. A hotel and shopping center are located approximately 1,100 feet east of the site. The nearest residences are located approximately 1,400 feet southeast of the site. The nearest school, the McKinley Middle Magnet School, is located 0.85 mile east of the site. The site has occasionally been used by locals for illegal dumping of non-hazardous solid waste and recreational fishing from the banks of the Mississippi River occurs in this area.

### 5.3 SOIL EXPOSURE AND AIR PATHWAY SUMMARY

With the exception of dirt and shell/limestone covered access roads, the site is heavily vegetated. The vegetated cover would limit the potential for release of particulate material to the air, but would not restrict the release of subsurface gasses, if present. During the perimeter survey, no odors were detected and there was no indication of blowing dust or soil.

### 6. CONCLUSIONS

The GMS site is situated in a light commercial/residential neighborhood in Baton Rouge, East Baton Rouge Parish, Louisiana. GMS operated a barge cleaning operation from 1974 to 1984. Waste wash-fluids were transferred to receiving tank(s). Oily fluids were transferred to an oil-water separator and water was discharged to the Mississippi River under NPDES Permit No. LA0045705. Oil and waste wash fluids containing methanol, styrene, toluene, benzene, ethylene dichloride, and/or carbon tetrachloride were supposedly transferred to storage tanks for subsequent disposal. In December of 1980, LDNR Office of Environmental Affairs issued a violation, citing GMS for contamination of the separator by non-oily wastes and releases of wastes to the batture and Mississippi River. NPDES Permit No. LA0045705 was cancelled and never reinstated. LDNR/LDEQ inspections conducted in 1983, 1984, and 1988 noted contents in the tanks with no leakage or ground contamination. The primary pollution point sources, the tanks and their contents, were removed 1990.

The presence of any residual subsurface contamination and the status of the drain used in conjunction with the NPDES permit are unknown. The lack of stressed vegetation on the site and the lack of sheen and/or discoloration of surface and subsurface (leachate) drainage from the site indicated significant secondary pollution point sources are not present, but soil and water sample analysis would be required to confirm the lack of contamination.

If significant pollution point sources consisting of oil and the volatile organic compounds handled by this facility are present, the surface water has the highest potential for contamination, via surface drainage through the NWI defined wetlands and subsurface drainage though the highly permeable soils. This would pose a threat to the environment and to human targets through food chain contamination. With the exception of the one domestic well 0.23 mile from the site, the potential of groundwater drinking source contamination is low, and based on the public drinking water distribution; this well is probably no longer used. No release to the air is suspected due to the heavily vegetated cover and the lack of any odors or blowing particulates during the site

reconnaissance. The likelihood of human exposure to contaminated soil is unknown, but since there are no restrictions to access to the site and recreational fishing from the banks of the Mississippi River occurs in this area, incidental exposure would be possible if secondary potential pollution point sources are present.

### 7. REFERENCES

### 7.1 PUBLISHED REFERENCES

Baumann, T., et al. (2005) *Water Resources Data for Louisiana, Water Year 2005 - Water-Data Report LA-05-01*, United States Geological Survey (USGS). Available online at http://pubs.usgs.gov/wdr/2005/wdr-la-05-1/pdfs/WDR LA-05-1.pdf

Boniol, D. et al. (1989) Recharge Potential of Louisiana Aquifers, A Supplement to the State Aquifer Recharge Map and Atlas Plates, Louisiana Geological Survey.

Buono, A. (1983) The Southern Hills Regional Aquifer System of Southeastern Louisiana and Southwestern Mississippi, USGS.

Louisiana Department of Environmental Quality (LDEQ) Electronic Document Management System (EDMS). No date . Documents may be obtained from the LDEQ Public Records Center, Room 127, 602 N. Fifth Street, Baton Rouge, LA 70802, 225-219-3168 or e-mail publicrecords@la.gov. Online information is available at <a href="http://edms.deq.louisiana.gov/app/help/faq.aspx">http://edms.deq.louisiana.gov/app/help/faq.aspx</a>

Smoot, C.W. (1989) Louisiana Hydrologic Atlas Map No. 4: Geohydrologic Sections of Louisiana, USGS.

Tomaszewski, D.J., (1996) Hydrogeology and the Effects of Pumpage on the 1500-Foot Sand South of the Baton rouge Fault, Near Brusly, Louisiana, Water Resources Technical Report No. 65., Louisiana Department of Transportation and Development (LDOTD), in cooperation with USGS.

Tomaszewski, Dan J., Lovelace, John K. and Ensminger, Paul A.(2002) Water Withdrawals and Trends in Ground-water Levels and Stream Discharge in Louisiana, U.S. Geological Resources Technical Report No. 68. LDOTD in cooperation with USGS.

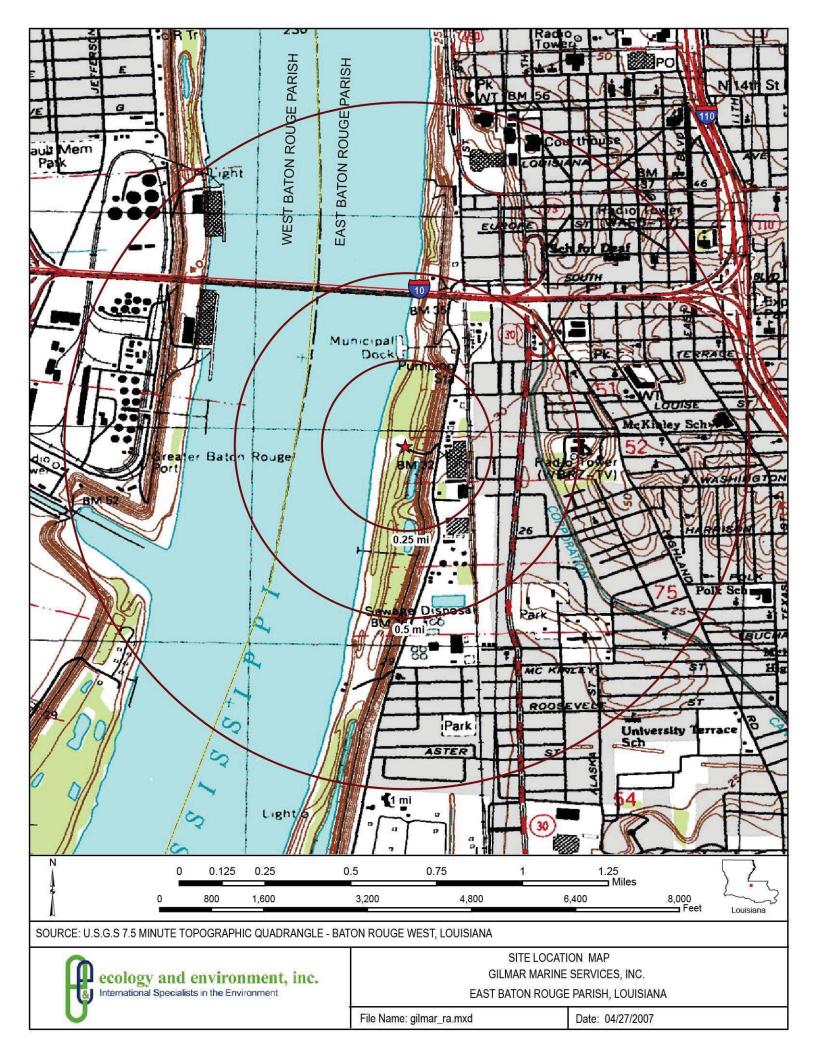
### 7.2 ONLINE REFERENCES

Louisiana Oil Spill Coordinators Office (LOSCO) (1999), Drinking Water Sources with Surface Intakes, Louisiana, from LDHH source data, Geographic NAD83, <u>http://lagic.lsu.edu/</u>

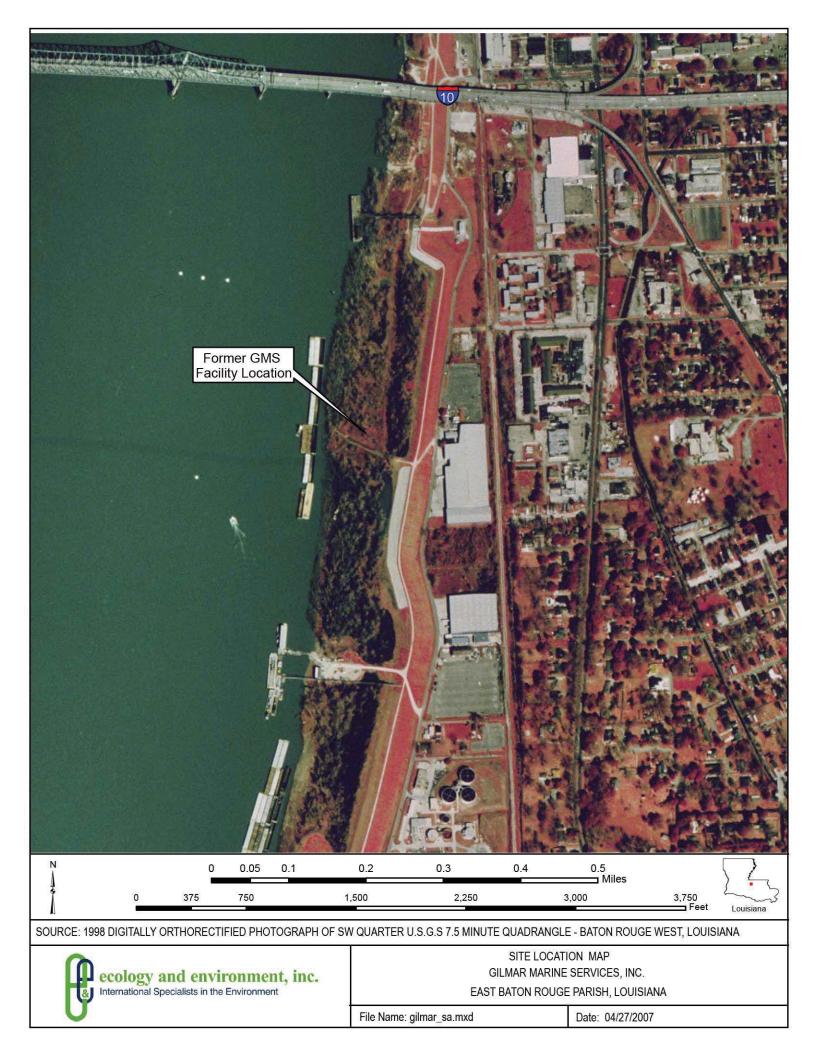
LOSCO 'Community' Feature Extract of Louisiana Geographic Names Information System (GNIS) Points from USGS source data, Geographic NAD83, 1999 <u>http://lagic.lsu.edu/</u>

Louisiana Department of Transportation and Development (LDOTD) Public Works & Water Resources Division Water Well Registration Data File http://www.dotd.state.la.us/intermodal/wells/ Natural Resources Conservation Service (NRCS) Web Soil Survey (WSS), no date, provides soil data and information produced by the National Cooperative Soil Survey, United States Department of Agriculture (USDA) <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>

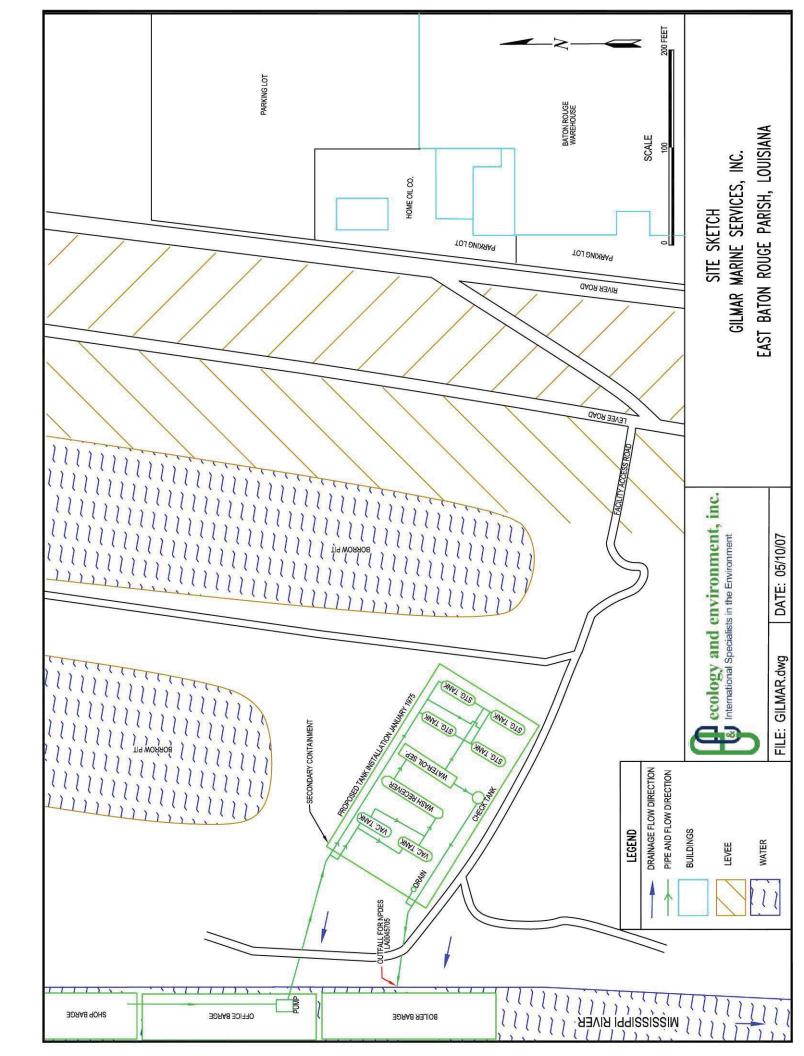
United States Army Corps of Engineers (USACE), Water Control Section (WCS), no date, Stage Data - Mississippi River At Baton Rouge, LA Gage ID 01160, located at the Port Allen Lock at Mile 228.4 (1962 Survey), Latitude 30-25-45 North, Longitude 91-12-25 West, <u>http://www.mvn.usace.army.mil/cgi-bin/watercontrol.pl</u>


United States Census Bureau (USCB), no date, 2000 Census Data. http://www.census.gov/

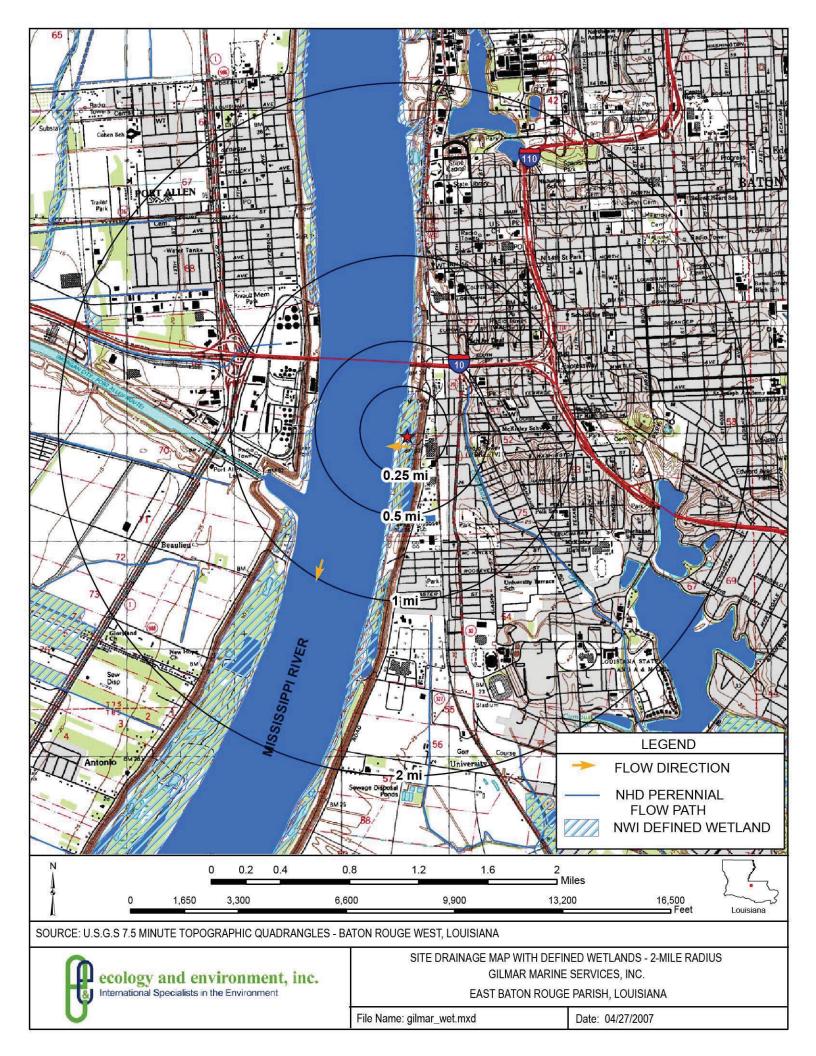
United States Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI) <a href="http://wetlandsfws.er.usgs.gov/NWI">http://wetlandsfws.er.usgs.gov/NWI</a>

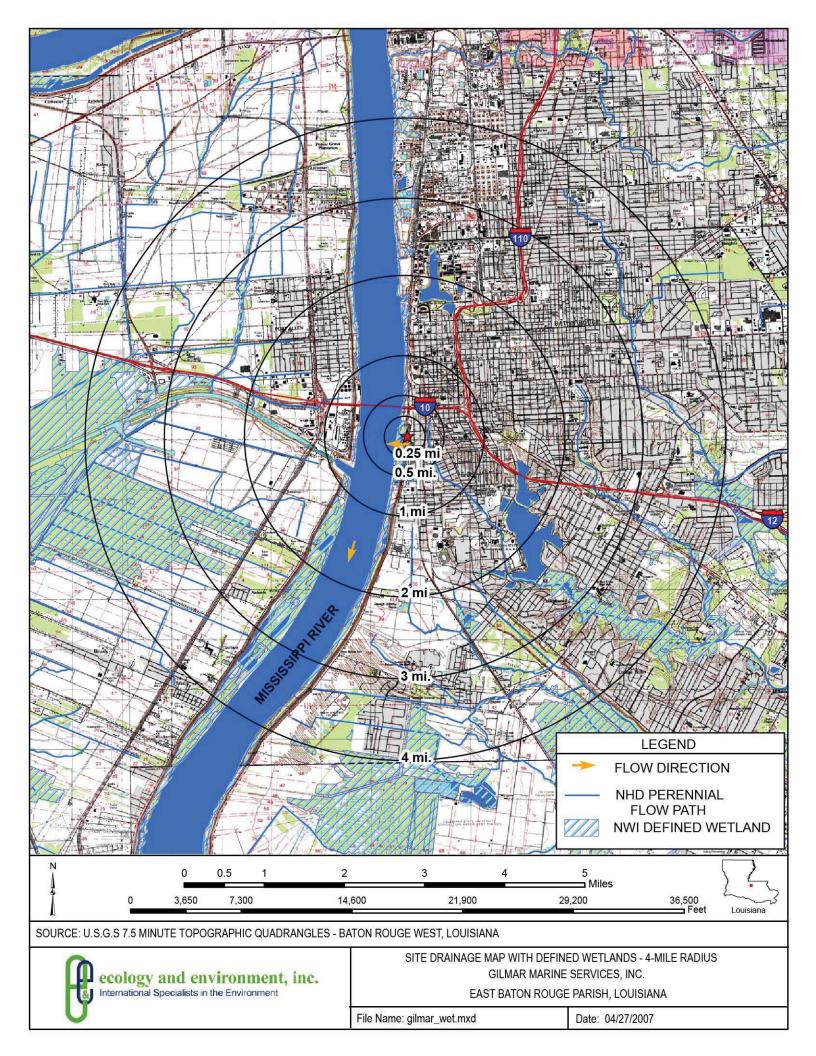

USFWS Environmental Conservation Online System (ECOS) <u>http://ecos.fws.gov/ecos\_public/index.do</u>

USGS National Water Use Database (NWUDB), no date, *Estimated Use of Water in the United States County-Level Data for 2000*. <u>http://water.usgs.gov/watuse/data/2000/index.html</u>

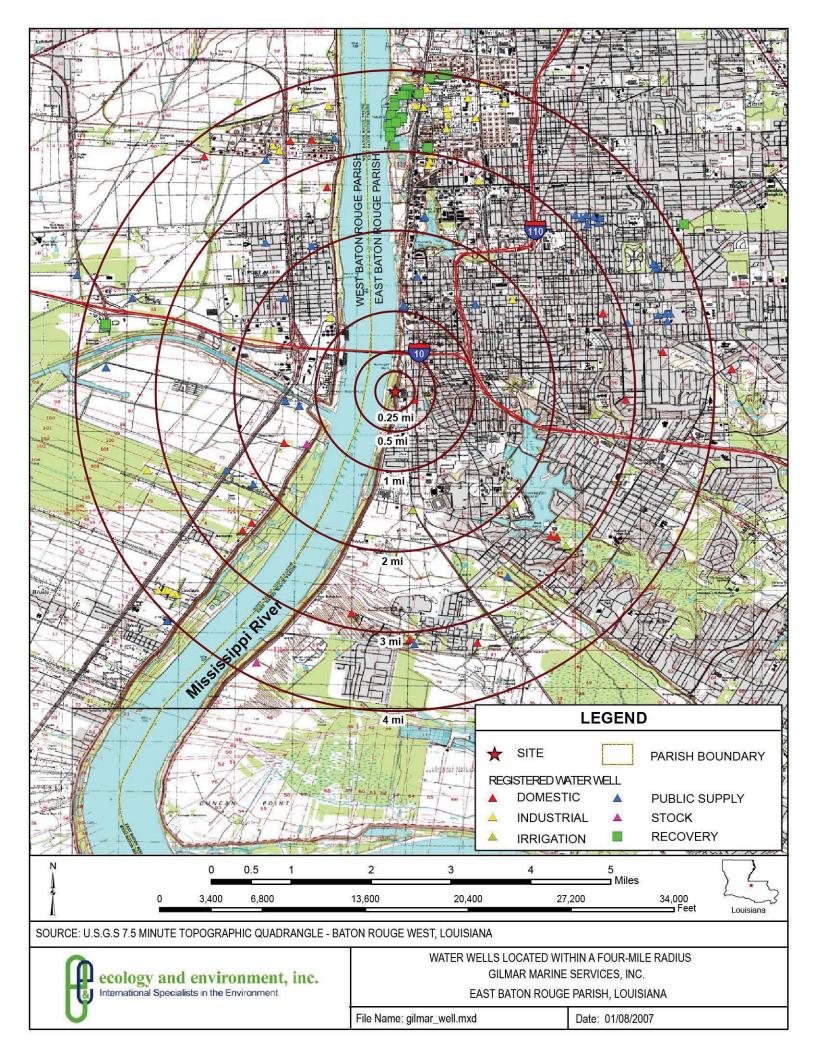

SITE LOCATION MAP




SITE AERIAL




SITE SKETCH




SITE DRAINAGE MAP





### GROUNDWATER WITHDRAWAL WELLS LOCATED WITHIN A 4-MILE RADIUS



# Wells located within 4 mile radius of Latitude 30°25'59" and Longitude 91°11'34"

|                                     | Owner                            | DOTD   | Owner  | Driller's         | Well  | Well       | Casing   | Drill  | Water   | W.L. Date  | Geologic | Lati   | Longi  | Avail  | Distance |
|-------------------------------------|----------------------------------|--------|--------|-------------------|-------|------------|----------|--------|---------|------------|----------|--------|--------|--------|----------|
| Parish                              | Name                             | Well # | Well # | Name              | Depth | Use        | Size     | Date   | Level   | Measured   | Unit     | tude   | tude   | Info   | in Miles |
| East Baton<br>Rouge                 | JARREAU                          | -536   |        | GARLETE<br>WELL   | 116   | DOMESTIC   | 3        | Apr-52 | FLOWING | 4/16/1952  | 112MRVA  | 302315 | 911120 | δ      | 3.08     |
| East Baton<br>Rouge                 | NEHER, C                         | -583   |        | AIRHART           | 304   | DOMESTIC   | 2.50X2   | Apr-56 | 3.3     | 4/25/1956  | 112SLBR  | 302422 | 910944 | рQМ    | 2.51     |
| East Baton<br>Rouge                 | PULLEN, F                        | -665   |        | LAMBERT'S         | 116   | DOMESTIC   | 4        | 1946   | 4       | 00/00/46   | 112SLBR  | 302647 | 910914 | DQW    | 2.45     |
| c                                   | VARN, H                          | -731   |        | GUITREAU P        | 186   | DOMESTIC   | 2        | Apr-61 | 1.34    | 5/11/1961  | 112MRVA  | 302313 | 911036 | ۵<br>۷ | 3.24     |
| East Baton<br>Rouge                 | RAMSEY, J                        | -734   |        | HERRINGTON        | 504   | DOMESTIC   | 2        | 1960   | 69      | 00/00/00   | 11204BR  | 302551 | 910859 | ×      | 2.49     |
| L                                   | ALBRITTO<br>N, W                 | -735   |        | HERRINGTON        | 481   | DOMESTIC   | 2        | Oct-61 | 70.42   | 10/23/1961 | 11204BR  | 302622 | 910835 | ED Q W | 2.93     |
| L                                   | MELANCO<br>N, C                  | -755   |        | LAMBERT'S         | 325   | DOMESTIC   | 3X2      | Mar-63 |         |            | 112SLBR  | 302422 | 910948 | ш      | 2.46     |
| East Baton<br>Rouge                 | GLEASON,<br>D                    | -768   |        | GREEN TOM         | 280   | DOMESTIC   | 2        | Jun-64 | 12      | 6/4/1964   | 112SLBR  | 302551 | 911117 | ED W   | 0.23     |
| East Baton<br>Rouge                 | OBERLING<br>, J                  | 662-   |        | GREEN TOM         | 390   | DOMESTIC   | 3X2      | Aug-65 | 55      | 9/9/1965   | 11204BR  | 302611 | 910750 | D W    | 3.64     |
| East Baton ROMBECH<br>Rouge , JOHN  | ROMBECH<br>, JOHN                | -8539Z |        | ECONOMY           | 180   | DOMESTIC   | 4X2      | Nov-99 | 12      | 11/9/1999  | 112MRVA  | 302332 | 911158 | DW     | 2.79     |
| West Baton PHILLIPS<br>Rouge BROS   | PHILLIPS<br>BROS                 | -20    |        | UNKNOWN           | 2080  | DOMESTIC   | 4        | Mar-44 | 46.2    | 3/1/1944   | 12115BR  | 302523 | 911242 | DQW    | 1.35     |
| West Baton DAMERON<br>Rouge , G & C | DAMERON<br>, G & C               | -40    |        | SUMMERS, D.<br>K. | 2191  | DOMESTIC   | 3X2      | Aug-56 |         |            | 12115BR  | 302431 | 911303 | ED     | 2.24     |
| West Baton CHAUDOI<br>Rouge R, E    | CHAUDOI<br>R, E                  | -42    |        | SUMMERS, D.<br>K. | 560   | DOMESTIC   | 4X2      | Sep-55 | 108     | 09/00/22   | 11206BR  | 302809 | 911214 | ωW     | 2.65     |
| West Baton HALPHEN,<br>Rouge F      | HALPHEN,<br>F                    | -54    |        | HEBERT A J        | 450   | DOMESTIC   | 2        | Sep-57 |         |            | 112SLBR  | 302426 | 911309 | σ      | 2.37     |
| West Baton<br>Rouge                 | LEBLANC,<br>L                    | 09-    |        | SUMMERS, D.<br>K. | 525   | DOMESTIC   | 4X2.50   | Jun-57 | 88.03   | 10/8/1958  | 11206BR  | 302840 | 911224 | DQW    | 3.26     |
| West Baton DENICOLA<br>Rouge , J    | DENICOLA                         | -72    |        | SUMMERS, D.<br>K. | 199   | DOMESTIC   | 1.5      | Sep-56 | 19      | 9/13/1956  | 112MRVA  | 302839 | 911238 | ΜQ     | 3.31     |
| West Baton WIBR<br>Rouge RADIO      | WIBR<br>RADIO                    | -124   |        | CAPITAL           | 499   | DOMESTIC   | 4X2      | May-71 | 15.2    | 4/18/1973  | 11204BR  | 302829 | 911334 | DQW    | 3.57     |
| C                                   | EXXON CO<br>USA                  | -34    | 34     | 34 LAYNE (LA)     | 459   | INDUSTRIAL | 12X8     | Apr-38 | 141     | 6/3/1938   | 11204BR  | 302907 | 911042 | DQW    | 3.74     |
| East Baton EXXON CO<br>Rouge USA    | EXXON CO<br>USA                  | -356   | 45     | 45 LAYNE (LA)     | 441   | INDUSTRIAL | 18X12    | Sep-43 | 226     | 9/22/1943  | 11204BR  | 302913 | 911109 | ED Q W | 3.79     |
| East Baton<br>Rouge                 | East Baton EXXON CO<br>Rouge USA | -398   | 48     | 48 EBERHART       | 1285  | INDUSTRIAL | 12X9X9X9 | Jul-45 |         |            | 12111BR  | 302902 | 911116 | EDMQ   | 3.57     |

Page 1 of 8

Key at end of table

## Marel Resources Section

# Wells located within 4 mile radius of Latitude 30°25'59" and Longitude 91°11'34"

| Owner<br>Barich Nome                | r DOTD     | Owner<br>Molu # | Driller's            | Well | Well       | Casing  | Drill  | Water      | W.L. Date  | Geologic<br>Unit | Lati   | Longi  | Avail   | Distance  |
|-------------------------------------|------------|-----------------|----------------------|------|------------|---------|--------|------------|------------|------------------|--------|--------|---------|-----------|
|                                     |            | * 1121          | Name                 | (tt) | 900        | (in)    | רמוב   | (tt)       | Measureu   |                  | annı   | anni   |         | SDIIM III |
| East Baton ALLIED<br>Rouge CHEM     | -467       | 2               | EBERHART             | 1021 | INDUSTRIAL | 12X9    | Jan-48 | 101.98     | 3/2/1948   | 12110BR          | 302826 | 911107 | EDMQ PW | 2.89      |
| East Baton EXXON CO<br>Rouge USA    | CO<br>499  | 54              | EBERHART             | 430  | INDUSTRIAL | 18X12   | Nov-48 |            |            | 11204BR          | 302914 | 911023 | E MQ    | 3.95      |
| East Baton EXXON<br>Rouge MOBIL     | -576       | 62              | 62 EBERHART          | 1270 | INDUSTRIAL | 18X12   | Aug-54 | 73.75      | 10/25/1954 | 12112BR          | 302917 | 911032 | ED Q PW | 3.96      |
| East Baton EXXON CO<br>Rouge USA    | CO<br>-580 | 63              | 63 LAYNE (LA)        | 1242 | INDUSTRIAL | 18X12X9 | Dec-55 | 115        | 12/9/1955  | 12112BR          | 302903 | 911018 | EQW     | 3.77      |
| East Baton EXXON CO<br>Rouge USA    | CO -587    | 64              | EBERHART             | 2110 | INDUSTRIAL | 18X12   | Jun-56 | 121        | 9/17/1956  | 12220BR          | 302900 | 911056 | E MQ W  | 3.56      |
| East Baton KEANS<br>Rouge LAUNDRY   | RY -674    |                 | EBERHART             | 2250 | INDUSTRIAL | 18      | Dec-58 |            |            | 12220BR          | 302656 | 911013 | EDMQ    | 1.71      |
| East Baton ALLIED<br>Rouge CHEM     | -784       | 4               | EBERHART             | 1282 | INDUSTRIAL | 12X9X9  | Nov-64 |            |            | 12112BR          | 302823 | 911108 | ED Q    | 2.84      |
| East Baton EXXON CO<br>Rouge USA    | CO<br>-810 | 69              | 69 LAYNE (LA)        | 2130 | INDUSTRIAL | 18X12X8 | Sep-66 | 223.1      | 10/19/1966 | 12220BR          | 302854 | 911037 | EQW     | 3.52      |
| East Baton EXXON CO<br>Rouge USA    | CO<br>-851 | 72              | 72 EBERHART          | 2119 | INDUSTRIAL | 18X12   | Aug-68 | 267        | 9/23/1968  | 12220BR          | 302901 | 91111  | EQW     | 3.55      |
| East Baton EXXON CO<br>Rouge USA    | CO<br>-855 | 74              | 74 LAYNE (LA)        | 2208 | INDUSTRIAL | 18X12X9 | Apr-69 | 274        | 4/29/1969  | 12220BR          | 302847 | 911056 | EQW     | 3.32      |
| East Baton EXXON CO<br>Rouge USA    | CO<br>-884 | 76              | 76 LAYNE (LA)        | 2120 | INDUSTRIAL | 18X12X9 | Sep-69 | 299        | 4/22/1970  | 12220BR          | 302904 | 911018 | E W     | 3.79      |
| East Baton CONCRET<br>Rouge E       | ET -1300   |                 | ECONOMY              | 585  | INDUSTRIAL | 9       | 00-InC | 85         | 7/6/2000   | 11206BR          | 302813 | 911035 | D W     | 2.77      |
| East Baton HONEYWE<br>Rouge LL      | WE -1301   | 2               | STAMM-<br>5 SCHEELE  | 1260 | INDUSTRIAL | 16X10   | Apr-00 | 135        | 4/27/2000  | 12112BR          | 302830 | 911106 | EDMQ PW | 2.97      |
| East Baton EXXON<br>Rouge MOBIL     | -1318      | 78              | STAMM-<br>78 SCHEELE | 607  | INDUSTRIAL | 14      | 3-Oct  | <u> 56</u> | 10/1/2003  | 0                | 302856 | 911055 | EDMQ PW | 3.49      |
| West Baton LAWS, H<br>Rouge & CO    | ч Г<br>-9  | CINCLARE<br>#1  | EBERHART             | 2134 | INDUSTRIAL | 4X2.50  | 1916   | 17         | 00/00/16   | 12115BR          | 302347 | 911404 | ΜQ      | 3.54      |
| West Baton LAWS, H L<br>Rouge & CO  | <br>-7     | CINCLARE<br>#4  | UNKNOWN              | 200  | INDUSTRIAL | ø       | 8      | 20         | 3/2/1942   | 112MRVA          | 302347 | 911400 | Ø       | 3.5       |
| West Baton EXXON CO<br>Rouge USA    | CO<br>-38  | ANCHORA<br>GE4  | EBERHART             | 1254 | INDUSTRIAL | 10X8X6  | Dec-54 | 38.1       | 7/12/1955  | 12112BR          | 302836 | 911249 | EDM W   | 3.33      |
| West Baton EXXON CO<br>Rouge USA    | CO<br>-44  | ANCHORA<br>GE3  | EBERHART             | 1247 | INDUSTRIAL | 8       | Apr-50 | 16.1       | 4/7/1950   | 12112BR          | 302833 | 911245 | D W     | 3.25      |
| West Baton CONCRET<br>Rouge E       | ET -63     |                 | HEBERT A J           | 230  | INDUSTRIAL | 9       | 1957   |            |            | 112MRVA          | 302505 | 911322 |         | 2.09      |
| West Baton MISSOURI<br>Rouge PAC RR | IRI -73    |                 | SOUTHERN CO          | 176  | INDUSTRIAL | 8       | 22-Dec |            |            | 112MRVA          | 302900 | 911235 | ٥       | 3.68      |

Page 2 of 8

## Water Resources Section

# Wells located within 4 mile radius of Latitude 30°25'59" and Longitude 91°11'34"

|                                     | Owner              | DOTD   | Owner         | Driller's          | Well  | Well          | Casing   | Drill  | Water  | W.L. Date  | Geologic | Lati   | Longi  | Avail  | Distance |
|-------------------------------------|--------------------|--------|---------------|--------------------|-------|---------------|----------|--------|--------|------------|----------|--------|--------|--------|----------|
| Parish                              | Name               | Well # | Well #        | Name               | Depth | Use           | Size     | Date   | Level  | Measured   | Unit     | tude   | tude   | Info   | in Miles |
|                                     |                    |        |               |                    | (#)   |               | (in)     |        | (ft)   |            |          |        |        |        |          |
| West Baton EXXON<br>Rouge CHEMIC    | EXXON<br>CHEMICAL  | -127   | ANCHORA<br>GE | STAMM-<br>SCHEELE  | 220   | INDUSTRIAL    | 18       | Jul-72 | 17.5   | 7/27/1972  | 112MRVA  | 302902 | 911213 | ED W   | 3.63     |
| West Baton GREATER<br>Rouge BR PORT | GREATER<br>BR PORT | -181   | 6             | STAMM-<br>SCHEELE  | 1900  | INDUSTRIAL    | 14X10X10 | 98-voN | 105    | 11/10/1986 | 12117BR  | 302644 | 911212 | EDMQ W | 1.15     |
| West Baton LAWS, H L<br>Rouge & CO  | LAWS, H L<br>& CO  | -192   | CINCLARE      | FBERHART           | 293   | INDUSTRIAL    | 18X12    | Sep-63 |        |            | 112MRVA  | 302344 | 911352 |        | 3 44     |
| L C                                 | LAWS, H L          |        | CINCLARE      |                    |       |               |          |        |        |            |          |        |        | Ē      |          |
| Rouge                               | & CO               | -193   | #9            | UNKNOWN            | 384   | INDUSTRIAL    | 10X8     | Mar-64 |        |            | 112MRVA  | 302347 | 911358 | D      | 3.47     |
| West Baton TIGATOR<br>Rouge INC     | TIGATOR<br>INC     | Z8E95- |               | GURGANUS, J.<br>R. | 170   | INDUSTRIAL    | 4        | Mar-95 | 5      | 3/15/1995  | 112MRVA  | 302505 | 911411 | D W    | 2.83     |
| East Baton<br>Rouge                 | BATES, C           | -157   |               | EBERHART           | 1552  | IRRIGATION    | 6X4      | Jun-42 | 23     | 8/1/1944   | 12115BR  | 302541 | 910919 | DQW    | 2.18     |
| East Baton BATON<br>Rouge ROUGE     | BATON<br>ROUGE     | -1024  | FOOTBALL      | LAMBERT'S          | 315   | IRRIGATION    | œ        | May-80 | 16.3   | 10/16/1984 | 112MRVA  | 302439 | 911118 | ED W   | 1.49     |
| East Baton BATON<br>Rouge ROUGE     | BATON<br>ROUGE     | -1130  | HORTICUL      | EBERHART           | 361   | IRRIGATION    | 8X6      | Oct-83 | 25     | 10/4/1983  | 112SLBR  | 302443 | 911012 | M      | 1.9      |
| n                                   | MORRIS,<br>BUCK    | -1239  |               | ECONOMY            | 295   | IRRIGATION    | 4X2      | Aug-84 | 20     | 8/6/1984   | 112SLBR  | 302413 | 910933 | ΜQ     | 2.76     |
| East Baton<br>Rouge                 | BREC               | -1351  | WEBB<br>PARK1 | LAYNE              | 500   | IRRIGATION    | 12X10    | 5-Jun  | 48     | 6/29/2005  | 0        | 302607 | 910805 | ED W   | 3.39     |
| East Baton NEAAMS,<br>Rouge KEYNON  | NEAAMS,<br>KEYNON  | -8536Z |               | BABIN,<br>WHITNEY  | 265   | IRRIGATION    | 4X2      | 1-Jun  | °C     | 6/4/2001   | 112SLBR  | 302416 | 910938 | ΜQ     | 2.66     |
| West Baton LEBLANC,<br>Rouge LEO JR | LEBLANC,<br>LEO JR | -5627Z |               | GURGANUS, J.<br>R. | 150   | IRRIGATION    | 2        | Sep-93 | 5      | 9/25/1993  | 112MRVA  | 302905 | 911312 | ΝQ     | 3.99     |
| East Baton STATES<br>Rouge UTL      | STATES<br>UTL      | -522   | 11            | 11 LAYNE (LA)      | 1190  | POWER GEN.    | 18X8     | Dec-48 | 20     | 12/22/1948 | 12112BR  | 302924 | 911121 | ED Q W | 3.98     |
| East Baton ENTERGY<br>Rouge GULF    | ENTERGY<br>GULF    | -1323  | 27-A          | STAMM-<br>SCHEELE  | 2158  | POWER GEN.    | 16X12    | յոէ-ջ  | 282    | 5/15/2003  | 0        | 302921 | 911119 | ED W   | 3.93     |
| East Baton ROUGE<br>Rouge WW        | ROUGE<br>WW        | -151   | GOV'T ST<br>2 | EBERHART           | 2658  | PUBLIC SUPPLY | 12X10X8  | 1944   | 5.6    | 8/29/1944  | 12223BR  | 302641 | 910858 | D Q PW | 2.65     |
| c                                   | ROUGE<br>WW        | -413   | GOV'T3        | EBERHART           | 1745  | PUBLIC SUPPLY | 12X9X9X9 | 1946   | 55.43  | 9/4/1958   | 12115BR  | 302642 | 910832 | EDMQ W | 3.07     |
| East Baton<br>Rouge                 | ROUGE<br>WW        | -510   | LULA17        | EBERHART           | 1605  | PUBLIC SUPPLY | 12X9     | Jan-51 | 77.65  | 9/4/1958   | 12115BR  | 302751 | 910925 | MQ W   | 3.02     |
| -                                   | DOWNING,<br>B      | -569   |               | SUMMERS, D.<br>K.  | 2170  | PUBLIC SUPPLY | 6X3      | Dec-54 | 44.7   | 12/11/1954 | 12115BR  | 302312 | 911117 | ED Q W | 3.15     |
| East Baton ROUGE<br>Rouge WW        | ROUGE<br>WW        | -630   | LAF 15        | EBERHART           | 2253  | PUBLIC SUPPLY | 20X12X9  | Aug-56 | 138.66 | 2/8/1961   | 12220BR  | 302651 | 911124 | DMQ W  | 1.06     |
| East Baton ROUGE<br>Rouge WW        | ROUGE<br>WW        | -657   | LULA18        | EBERHART           | 1618  | PUBLIC SUPPLY | 22X18X12 | Sep-55 | 72.02  | 9/4/1958   | 12115BR  | 302751 | 910932 | D Q PW | 2.94     |

Page 3 of 8

# Wells located within 4 mile radius of Latitude 30°25'59" and Longitude 91°11'34"

|                              |                                | 0100   |                | Public de          | 141-11        | TATA II       |              | 10-0   | 141-4         | MI Date    | Contraction of | 4      | 1 want | Asset   |          |
|------------------------------|--------------------------------|--------|----------------|--------------------|---------------|---------------|--------------|--------|---------------|------------|----------------|--------|--------|---------|----------|
|                              | Cwner                          |        |                | Uriller S          | Mell          | well          | casing       |        | water         | w.L. Uale  | ceologic       | Lau    | Longi  |         | UISIANCE |
| Parish                       | Name                           | Well # | Well #         | Name               | Depth<br>(ft) | Use           | Size<br>(in) | Date   | Level<br>(ft) | Measured   | Unit           | tude   | tude   | Into    | in Miles |
| East Baton<br>Rouge          | ROUGE<br>WW                    | -658   | LULA19         | EBERHART           | 1604          | PUBLIC SUPPLY | 18X12        | Sep-56 | 75.39         | 9/4/1958   | 12115BR        | 302745 | 910924 | DQW     | 2.94     |
| East Baton<br>Rouge          | ROUGE<br>WW                    | -726   | LULA20         | EBERHART           | 1601          | PUBLIC SUPPLY | 18X12X9      | Aug-60 | 89.4          | 10/10/1960 | 12115BR        | 302746 | 910917 | D Q PW  | 3.04     |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -733   | GOV'T5         | EBERHART           | 2637          | PUBLIC SUPPLY | 12X8X8       | May-61 | 86.03         | 7/25/1961  | 12223BR        | 302647 | 910833 | DQW     | 3.08     |
| East Baton<br>Rouge          | ROUGE<br>WW                    | -751   | 45TH#1         | EBERHART           | 2595          | PUBLIC SUPPLY | 18X9         | 1962   | 82            | 8/27/1962  | 12224BR        | 302716 | 910838 | EQW     | 3.22     |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -771   | GOV'T6         | EBERHART           | 1739          | PUBLIC SUPPLY | 18X12X9      | May-63 | 72            | 8/15/1963  | 12115BR        | 302646 | 910838 | ED Q W  | 2.99     |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -774   | 45TH#2         | EBERHART           | 2143          | PUBLIC SUPPLY | 18X12X9      | Jan-64 | 126           | 4/2/1964   | 12220BR        | 302718 | 910839 | DQW     | 3.23     |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -813   | LAKE#1         | EBERHART           | 2536          | PUBLIC SUPPLY | 18X12X8      | Apr-67 | 162           | 8/24/1967  | 12224BR        | 302749 | 911111 | ED Q W  | 2.18     |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -814   | LULA21         | EBERHART           | 2168          | PUBLIC SUPPLY | 18X12X8      | Aug-66 | 180.6         | 11/14/1966 | 12220BR        | 302749 | 910916 | ΜQ      | 3.09     |
| East Baton<br>Rouge          | ROUGE<br>WW                    | -874   | LAKE#2         | EBERHART           | 2250          | PUBLIC SUPPLY | 18X12X8      | Jul-70 |               |            | 12220BR        | 302750 | 911110 | ED Q    | 2.21     |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -927   | 45TH#3         | EBERHART           | 1511          | PUBLIC SUPPLY | 18X12X12     | Jun-73 | 135           | 2/19/1974  | 12115BR        | 302717 | 910839 | DQW     | 3.22     |
| East Baton<br>Rouge          | ROUGE<br>WW                    | -938   | LULA22         | EBERHART           | 1599          | PUBLIC SUPPLY | 18X12X12     | Jun-72 | 151           | 2/1/1974   | 12115BR        | 302749 | 910928 | DQW     | 2.95     |
| East Baton<br>Rouge          | ROUGE<br>WW                    | -939   | LULA23         | EBERHART           | 1592          | PUBLIC SUPPLY | 18X12        | Jul-74 | 165           | 2/23/1977  | 12115BR        | 302750 | 910920 | ED Q W  | 3.06     |
| East Baton<br>Rouge          | LA CIVIL<br>DEFENS             | -1007  |                | MORRISON, J.<br>L. | 845           | PUBLIC SUPPLY | 10X8X6       | Aug-78 | 94.09         | 8/3/1978   | 12108BR        | 302711 | 911115 | EDMQ PW | 1.46     |
| East Baton<br>Rouge          | ROUGE<br>WW                    | -1149  | CONVENT<br>N 1 | EBERHART           | 2694          | PUBLIC SUPPLY | 18X12        | Dec-86 | 147           | 5/13/1987  | 12224BR        | 302653 | 911037 | ED W    | 1.4      |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -1150  | CONVENT<br>N 2 | EBERHART           | 2242          | PUBLIC SUPPLY | 18X12X12     | Apr-87 | 207           | 4/21/1987  | 12220BR        | 302653 | 911037 | ED W    | 1.4      |
| East Baton<br>Rouge          | East Baton AUTOMOT<br>Rouge IV | -1217  |                | SUMMERS<br>(DALE)  | 305           | PUBLIC SUPPLY | 2            | Jan-90 | 15            | 1/9/1990   | 112MRVA        | 302356 | 911016 | ΜQ      | 2.6      |
| East Baton<br>Rouge          | ROUGE<br>WW                    | -1252  | GOV'T7         | LAYNE (BR)         | 2633          | PUBLIC SUPPLY | 18X12X9      | May-93 | 153           | 5/6/1993   | 12224BR        | 302647 | 910830 | EDM PW  | 3.13     |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -1253  | LAF 18         | LAYNE (BR)         | 2687          | PUBLIC SUPPLY | 18X12X8      | Aug-93 | 165           | 8/31/1993  | 12223BR        | 302652 | 911124 | EDM PW  | 1.08     |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -1276  | N 45TH<br>ST4  | LAYNE (BR)         | 1075          | PUBLIC SUPPLY | 18           | May-97 | 93            | 2/27/1997  | 12110BR        | 302717 | 910840 | EDMQ PW | 3.2      |
| East Baton ROUGE<br>Rouge WW | ROUGE<br>WW                    | -1308  | N45TH #5       | LAYNE (BR)         | 1070          | PUBLIC SUPPLY | 18           | 1-Sep  | 98            | 9/16/2001  | 12110BR        | 302719 | 910841 | EDM PW  | 3.21     |

Page 4 of 8

# Wells located within 4 mile radius of Latitude 30°25'59" and Longitude 91°11'34"

|                                      | Owner                               | DOTD   | Owner          | Driller's         | Well          | Well          | Casing       | Drill  | Water         | W.L. Date  | Geologic     | Lati   | Longi  | Avail       | Distance |
|--------------------------------------|-------------------------------------|--------|----------------|-------------------|---------------|---------------|--------------|--------|---------------|------------|--------------|--------|--------|-------------|----------|
| Parish                               | Name                                | Well # | Well #         | Name              | Depth<br>(ft) | Use           | Size<br>(in) | Date   | Level<br>(ft) | Measured   | Unit         | tude   | tude   | Info        | in Miles |
| West Baton<br>Rouge                  | SCHOOL<br>BRD                       | -31    | BRUSLY         | MCDERMOTT F       | 416           | PUBLIC SUPPLY | 4            | Dec-51 | 3             | 12/26/1951 | 112SLBR      | 302327 | 911358 | DQW         | 3.75     |
| West Baton PORT<br>Rouge ALLEN       | PORT<br>ALLEN, LA                   | -35    | e<br>e         | COASTAL WTR       | 1290          | PUBLIC SUPPLY | 10X6X6       | Mar-55 | 25            | 3/1/1955   | 12112BR      | 302657 | 911242 | DMQ W       | 1.67     |
| West Baton PORT<br>Rouge ALLEN       | PORT<br>ALLEN, LA                   | -110   | 12ST           | HENRY, L. B.      | 1322          | PUBLIC SUPPLY | 10X8         | Nov-66 |               |            | 12112BR      | 302733 | 911254 | ЕQ          | 2.32     |
| West Baton<br>Rouge                  | West Baton PLAQUEMI<br>Rouge NE, LA | -111   |                | HENRY, L. B.      | 2650          | PUBLIC SUPPLY | 16X10X8      | Jan-68 | 43.5          | 1/15/1970  | 12220BR      | 302550 | 911241 | E MQ PW     | 1.18     |
| C                                    | PLAQUEMI<br>NE, LA                  | -112   | 2              | PHENRY, L. B.     | 2205          | PUBLIC SUPPLY | 16X10X8      | Jan-68 | 23.85         | 1/15/1970  | 12115BR      | 302550 | 911241 | MQ W        | 1.18     |
| C                                    | PLAQUEMI<br>NE, LA                  | -113   | °,             | henry, L. Β.      | 2242          | PUBLIC SUPPLY | 16X10X8      | Jan-68 | 49.2          | 5/7/1974   | 12115BR      | 302547 | 911232 | E MQ W      | 1.04     |
| West Baton WBR WTR<br>Rouge DIST 2   | WBR WTR<br>DIST 2                   | -132   | CONSOLID<br>AT | EBERHART          | 2082          | PUBLIC SUPPLY | 12X8X6       | Sep-76 | 30.65         | 2/10/1976  | 12115BR      | 302505 | 911320 | EDMQ PW     | 2.06     |
| West Baton WBR WTR<br>Rouge DIST 4   | WBR WTR<br>DIST 4                   | -136   | HIGHWAY<br>76  | EBERHART          | 1305          | PUBLIC SUPPLY | 10X8X8       | Aug-72 | 66.59         | 2/10/1976  | 12112BR      | 302712 | 911457 | E MQ W      | 3.71     |
| West Baton JACINTOP<br>Rouge ORT COR | JACINTOP<br>ORT COR                 | -137   | WEST           | UNKNOWN           | 1330          | PUBLIC SUPPLY | 12X8         | Nov-74 | 69.41         | 2/10/1976  | 12112BR      | 302657 | 911421 | EDMQ W      | 3.05     |
| West Baton WBR GAS<br>Rouge AND WTR  | WBR GAS<br>AND WTR                  | -150   | SUNRISE        | STAMM-<br>SCHEELE | 1034          | PUBLIC SUPPLY | 14X10X8      | Jun-78 | 56            | 6/22/1978  | 12110BR      | 302827 | 911254 | EDMQ W      | 3.2      |
| West Baton WBR WTR<br>Rouge DIST 2   | WBR WTR<br>DIST 2                   | -173   | £              | BERHART           | 2194          | PUBLIC SUPPLY | 12X8         | Jun-85 | 09            | 4/8/1985   | 12115BR      | 302456 | 911302 | DQW         | 1.9      |
| West Baton PORT<br>Rouge ALLEN       | PORT<br>ALLEN, LA                   | -207   | 1-A-6TH<br>ST  | STAMM-<br>SCHEELE | 1332          | PUBLIC SUPPLY | 10X6         | Dec-99 | 28            | 1/6/2000   | 12112BR      | 302731 | 911224 | EDMQ PW     | 2.02     |
| West Baton WBR GAS<br>Rouge AND WTR  | WBR GAS<br>AND WTR                  | -209   | SUNRISE<br>#4  | LAYNE (BR)        | 1010          | PUBLIC SUPPLY | 24X16        | May-00 | 109           | 4/4/2000   | 12110BR      | 302841 | 911209 | EDMQBP<br>W | 3.22     |
| West Baton<br>Rouge                  | LA DOTD                             | -5630Z | LTRC           | LAMBERT'S         | 180           | PUBLIC SUPPLY | 2            | Mar-94 | FLOWING       | 3/7/1994   | 112MRVA      | 302612 | 911438 | ΜQ          | 3.12     |
| East Baton<br>Rouge                  | EXXON CO<br>USA                     | -5762Z | RW-1           | BARRINGTON'S      | 20            | RECOVERY      | 9            | 78-nuc | 10.14         | 8/14/1987  | 112MRVA<br>C | 302906 | 911130 | D W         | 3.64     |
| East Baton<br>Rouge                  | EXXON CO<br>USA                     | -5763Z | RW-2           | BARRINGTON'S      | 15            | RECOVERY      | 9            | 78-nuL | 3.28          | 8/14/1987  | 112MRVA<br>C | 302904 | 911130 | D W         | 3.6      |
| East Baton<br>Rouge                  | EXXON CO<br>USA                     | -5764Z | RW-3           | BARRINGTON'S      | 15            | RECOVERY      | 9            | 78-nut | 4.08          | 8/14/1987  | 112MRVA<br>C | 302902 | 911130 | ΜQ          | 3.56     |
| East Baton<br>Rouge                  | EXXON CO<br>USA                     | -5766Z | RW-6           | BARRINGTON'S      | 19            | RECOVERY      | 9            | 78-nuL | 8.76          | 8/14/1987  | 112MRVA<br>C | 302856 | 911132 | D W         | 3.44     |
| East Baton<br>Rouge                  | EXXON CO<br>USA                     | -5767Z | RW-7           | BARRINGTON'S      | 24            | RECOVERY      | 6            | Jun-87 | 13.19         | 8/14/1987  | 112MRVA<br>C | 302854 | 911126 | D W         | 3.41     |
| East Baton<br>Rouge                  | EXXON CO<br>USA                     | -6238Z | RW-12          | PSI/PTL           | 24            | RECOVERY      | 9            | Jul-89 |               |            | 112MRVA<br>C | 302846 | 911132 | ٥           | 3.25     |

Page 5 of 8

# Wells located within 4 mile radius of Latitude 30°25'59" and Longitude 91°11'34"

| 8                                | Owner                            | UTOU   | Owner    | Drillor's          | INVAIL | Mall     | Cacing       | Drill  | Water | WI Date    | Geologic     | l ati  | londi  | Virail | Dietance |
|----------------------------------|----------------------------------|--------|----------|--------------------|--------|----------|--------------|--------|-------|------------|--------------|--------|--------|--------|----------|
| Darich                           | Nemo                             |        |          |                    | Mein   |          | Casing       |        |       | Woonunde   |              | tudo   |        | Info   | Ustance  |
|                                  | Name                             | meil # | Mell #   | Name               | (ft)   | OSe      | oize<br>(in) | Lale   | (ft)  | Measured   |              | apni   | apmi   | 0      |          |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -6562Z | RW404-2  | WOODWARD-<br>CLYDE | 16     | RECOVERY | 9            | Sep-90 | 4.1   | 9/28/1990  | 112MRVA<br>C | 302833 | 911108 | ΝQ     | 3.03     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -6597Z | RW-148-1 | WOODWARD-<br>CLYDE | 14     | RECOVERY | 8            | 06-voN | 4.5   | 11/27/1990 | 112MRVA<br>C | 302910 | 911114 | D Μ    | 3.72     |
| East Baton<br>Rouge              | EXXON<br>CHEMICAL                | -6842Z | RW-4     | LAYNE (ENV)        | 16     | RECOVERY | 4            | Dec-91 | 4     | 1/10/1992  | 112MRVA<br>C | 302911 | 911122 | ΝQ     | 3.73     |
| East Baton<br>Rouge              | EXXON<br>CHEMICAL                | -6843Z | RW-5     | LAYNE (ENV)        | 15     | RECOVERY | 4            | Dec-91 | 4.2   | 1/10/1992  | 112MRVA<br>C | 302911 | 911123 | ΝQ     | 3.73     |
| East Baton EXXON<br>Rouge CHEMIC | EXXON<br>CHEMICAL                | -6844Z | RW-6     | LAYNE (ENV)        | 14     | RECOVERY | 4            | Dec-91 | 3.5   | 1/10/1992  | 112MRVA<br>C | 302913 | 911122 | ΝQ     | 3.77     |
| c                                | EXXON<br>CHEMICAL                | -6845Z | RW-7     | LAYNE (ENV)        | 14     | RECOVERY | 4            | Dec-91 | 3.2   | 1/10/1992  | 112MRVA<br>C | 302913 | 911121 | DW     | 3.77     |
| E                                | EXXON CO<br>USA                  | -6903Z | RW-5     | WOODWARD-<br>CLYDE | 17     | RECOVERY | g            | Oct-92 | 4.52  | 11/3/1992  | 112MRVA<br>C | 302833 | 911109 | Ŋ      | 3.02     |
| E                                | EXXON CO<br>USA                  | -6904Z | RW-6     | WOODWARD-<br>CLYDE | 17     | RECOVERY | 9            | Oct-92 | 4.54  | 11/3/1992  | 112MRVA<br>C | 302833 | 911109 | ΡM     | 3.02     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | Z2069- | RW-7     | WOODWARD-<br>CLYDE | 17     | RECOVERY | 9            | Oct-92 | 4.05  | 11/3/1992  | 112MRVA<br>C | 302835 | 911108 | ΜQ     | 3.06     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | Z9069- | RW-8     | WOODWARD-<br>CLYDE | 17     | RECOVERY | 9            | Oct-92 | 5.36  | 11/3/1992  | 112MRVA<br>C | 302835 | 911108 | ΝQ     | 3.06     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -7142Z | RW-5A    | cci                | 27     | RECOVERY | 9            | Sep-90 |       |            | 112MRVA<br>C | 302856 | 911132 | D      | 3.44     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -7143Z | RW-19    | cci                | 27     | RECOVERY | 9            | Sep-90 |       |            | 112MRVA<br>C | 302855 | 911125 | D      | 3.43     |
| Ч                                | SOUTHLA<br>ND CORP               | -7466Z | RW-1     | ALLIANCE           | 13     | RECOVERY | 9            | Apr-94 | 5     | 4/13/1994  | 112SESC      | 302745 | 910821 | D W    | 3.75     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -7485Z | RW-7R    | FUGRO (GS)         | 32     | RECOVERY | 9            | Jul-94 | 17    | 7/14/1994  | 112SESC      | 302849 | 911134 | D W    | 3.31     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -7486Z | RW-8A    | FUGRO (GS)         | 23     | RECOVERY | 9            | Sep-94 | 5     | 9/26/1994  | 112SESC      | 302852 | 911127 | D W    | 3.37     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -7488Z | SF-2     | FUGRO (GS)         | 25     | RECOVERY | 9            | Nov-94 | 6     | 11/15/1994 | 112SESC      | 302850 | 911132 | D W    | 3.33     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -7489Z | SF-3     | FUGRO (GS)         | 30     | RECOVERY | 9            | Nov-94 | 22    | 11/15/1994 | 112SESC      | 302845 | 911133 | ΡM     | 3.23     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -7490Z | SF-4     | FUGRO (GS)         | 30     | RECOVERY | 9            | Nov-94 | 17    | 11/14/1994 | 112SESC      | 302842 | 911133 | D W    | 3.18     |
| East Baton<br>Rouge              | EXXON CO<br>USA                  | -7726Z | W-42     | FUGRO (GS)         | 35     | RECOVERY | 8X8          | Mar-96 | 13.5  | 3/25/1996  | 112SESC      | 302922 | 911056 | ΡM     | 3.98     |
| ast Baton<br>Rouge               | East Baton EXXON CO<br>Rouge USA | -7727Z | W-43     | FUGRO (GS)         | 35     | RECOVERY | 8X8          | Mar-96 | 12.37 | 3/25/1996  | 112SESC      | 302922 | 911058 | ΝQ     | 3.98     |
|                                  |                                  |        |          |                    |        |          |              |        |       |            |              | 115    | 2      |        |          |

Page 6 of 8

# Wells located within 4 mile radius of Latitude 30°25'59" and Longitude 91°11'34"

|                                 | Owner           | DOTD   | Owner  | Driller's                     | Well  | Well     | Casing | Drill  | Water | W.L. Date | Geologic     | Lati   | Longi  | Avail | Distance |
|---------------------------------|-----------------|--------|--------|-------------------------------|-------|----------|--------|--------|-------|-----------|--------------|--------|--------|-------|----------|
| Parish                          | Name            | Well # | Well # | Name                          | Depth | Use      | Size   | Date   | Level | Measured  | Unit         | tude   | tude   | Info  | in Miles |
| - And State of the State of the |                 |        |        | sale and on a construction of | (tt)  |          | (in)   |        | (ft)  |           |              |        |        |       |          |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7729Z | W-45   | FUGRO (GS)                    | 53    | RECOVERY | 6X6    | Mar-96 | 16.98 | 3/25/1996 | 112SESC      | 302920 | 911107 | D W   | 3.92     |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7813Z | W-28   | FUGRO (GS)                    | 13    | RECOVERY | 4      | 30-lut | 4.68  | 8/9/1995  | 112MRVA<br>C | 302910 | 911122 | ΡM    | 3.71     |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7815Z | W-30   | FUGRO (GS)                    | 13    | RECOVERY | 4      | Jul-95 | 2.84  | 8/9/1995  | 112MRVA<br>C | 302909 | 911122 | ΝQ    | 3.7      |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7816Z | W-31   | FUGRO (GS)                    | 13    | RECOVERY | 4      | Jul-95 | 5.16  | 8/9/1995  | 112MRVA<br>C | 302909 | 911122 | ΜQ    | 3.7      |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7817Z | W-32   | FUGRO (GS)                    | 13    | RECOVERY | 4      | Jul-95 | 2.63  | 8/9/1995  | 112MRVA<br>C | 302909 | 911122 | D     | 3.7      |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7818Z | W-33   | FUGRO (GS)                    | 13    | RECOVERY | 4      | Aug-95 | 2.17  | 8/9/1995  | 112MRVA<br>C | 302909 | 911122 | ΡM    | 3.7      |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7819Z | W-34   | FUGRO (GS)                    | 13    | RECOVERY | 4      | Aug-95 | 2.35  | 8/9/1995  | 112MRVA<br>C | 302909 | 911123 | Ŋ     | 3.69     |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7820Z | W-35   | FUGRO (GS)                    | 13    | RECOVERY | 4      | Aug-95 | 1.93  | 8/9/1995  | 112MRVA<br>C | 302909 | 911124 | ΡM    | 3.69     |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7821Z | W-36   | FUGRO (GS)                    | 13    | RECOVERY | 4      | 96-91  | 1.75  | 8/9/1995  | 112MRVA<br>C | 302909 | 911124 | D W   | 3.69     |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7822Z | W-37   | FUGRO (GS)                    | 13    | RECOVERY | 4      | Aug-95 | 1.92  | 8/9/1995  | 112MRVA<br>C | 302909 | 911125 | D W   | 3.69     |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7947Z | P-4B   | FUGRO (GS)                    | 26    | RECOVERY | 9      | 79-lut | 15.67 | 7/31/1997 | 112MRVA<br>C | 302854 | 911125 | D W   | 3.41     |
| East Baton<br>Rouge             | EXXON CO<br>USA | -7948Z | SF-1B  | FUGRO (GS)                    | 27    | RECOVERY | 9      | 79-lut | 18.3  | 7/31/1997 | 112MRVA<br>C | 302851 | 911129 | D W   | 3.35     |
| East Baton<br>Rouge             | EXXON CO<br>USA | -8250Z | RW-20  | WALKER-<br>HILL(CO)           | 30    | RECOVERY | 9      | 66-unr | 25    | 6/23/1999 | 112SESC      | 302835 | 911130 | D W   | 3.04     |
| West Baton<br>Rouge             | SEDCO           | -5817Z | RW-1   | G&E                           | 15    | RECOVERY | 9      | Jan-96 | 3     | 1/18/1996 | 112MRVA<br>C | 302639 | 911438 | ΡM    | 3.21     |
| West Baton<br>Rouge             | SEDCO           | -5818Z | RW-3   | G&E                           | 14    | RECOVERY | 4      | May-96 | 2.3   | 5/30/1996 | 112MRVA<br>C | 302639 | 911438 | D W   | 3.21     |
| West Baton<br>Rouge             | SEDCO           | -5819Z | RW-4   | G&E                           | 14    | RECOVERY | 4      | May-96 | 4     | 5/30/1996 | 112MRVA<br>C | 302640 | 911439 | D W   | 3.23     |
| West Baton<br>Rouge             | SEDCO           | -5820Z | RW-5   | G&E                           | 14    | RECOVERY | 4      | May-96 | 3.8   | 5/30/1996 | 112MRVA<br>C | 302640 | 911438 | D W   | 3.21     |
| West Baton<br>Rouge             | SEDCO           | -5821Z | RW-6   | G&E                           | 14    | RECOVERY | 4      | May-96 | 2.7   | 5/30/1996 | 112MRVA<br>C | 302640 | 911438 | D W   | 3.21     |
| West Baton<br>Rouge             | SEDCO           | -5822Z | RW-7   | G&E                           | 14    | RECOVERY | 4      | May-96 | 3.8   | 5/30/1996 | 112MRVA<br>C | 302640 | 911438 | D W   | 3.21     |
| West Baton<br>Rouge             | SEDCO           | -5823Z | RW-8   | G&E                           | 14    | RECOVERY | 4      | May-96 | 2.8   | 5/30/1996 | 112MRVA<br>C | 302640 | 911438 | DW    | 3.21     |

Page 7 of 8

## Wells located within 4 mile radius

# of Latitude 30°25'59" and Longitude 91°11'34"

|                      | Owner               | DOTD      | Owner    | Driller's        | Well  | Well              | Casing | Drill  | Water | W.L. Date  | Geologic | Lati   | Longi  | Avail | Distance |
|----------------------|---------------------|-----------|----------|------------------|-------|-------------------|--------|--------|-------|------------|----------|--------|--------|-------|----------|
| Parish               | Name                | Well #    | Well #   | Name             | Depth | Use               | Size   | Date   | Level | Measured   | Unit     | tude   | tude   | Info  | in Miles |
|                      |                     |           |          |                  | (ft)  |                   | (in)   |        | (ft)  |            |          |        |        |       |          |
| East Baton OAK       | OAK                 |           | DUPLANT  |                  |       |                   |        |        |       |            |          |        |        |       |          |
| Rouge                | PROD                | -5140Z    | 1        | GUICHARD         | 281   | <b>RIG SUPPLY</b> | 4      | Dec-84 |       |            | 112MRVA  | 302346 | 910956 | ۵     | 2.93     |
| East Baton DENOVO    | DENOVO              |           | GIANELLO |                  |       |                   |        |        |       |            |          |        |        |       |          |
| Rouge                | OIL-GAS             | -6581Z N4 | N4       | <b>RIG WATER</b> | 160   | <b>RIG SUPPLY</b> | 4      | Nov-90 | 15    | 11/15/1990 | 112MRVA  | 302737 | 910802 | DW    | 3.94     |
| West Baton HUFFCO    | HUFFCO              |           | SUMRALL  |                  |       |                   |        |        |       |            |          |        |        |       |          |
| Rouge                | PETRO               | -5037Z    | F        | <b>RIG WATER</b> | 150   | <b>RIG SUPPLY</b> | 4      | Sep-84 |       |            | 112MRVA  | 302523 | 911458 | ۵     | 3.49     |
| East Baton           | East Baton DUPLANTI |           |          |                  |       |                   |        |        |       |            |          |        |        |       |          |
| Rouge ER             | ER                  | -232      |          | UNKNOWN          | 175   | STOCK             | 2.5    | 1      |       |            | 112MRVA  | 302300 | 911300 | ø     | 3.68     |
| West Baton PHILLIPS, | PHILLIPS,           |           |          |                  |       |                   |        |        |       |            |          |        |        |       |          |
| Rouge                | R                   | -103      |          | MCCLINTON D      | 2137  | STOCK             | 4      | May-66 |       |            | 12115BR  | 302522 | 911227 | ш     | 1.14     |
|                      |                     |           |          |                  |       |                   |        |        |       |            |          |        |        |       |          |

### Available Information

| Ë      |      |
|--------|------|
| allo   | og.  |
|        | calL |
|        | ysid |
|        | aopt |
| /allio | Ő    |
| Ĩ      | ш    |

D - Driller's Log M - Mechanical Analysis Q - Quality of Water

P - Pumping Test W - Water Level B - Bacteriological Analysis

Louisiana Department of Transportation and Development (LDOTD) Public Works & Water Resources Division Water Well Registration Data File http://www.dotd.state.la.us/intermodal/wells/

Source: